Skip to main content

Advertisement

Log in

Gastrointestinal Dysfunction and HIV Comorbidities

  • Complications of HIV and Antiretroviral Therapy (GA McComsey, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Gut dysfunction and resulting chronic low-grade inflammation have been linked to metabolic and chronic diseases in the general population. In this review, we present recently published studies of HIV-associated gut dysfunction and comorbidities including obesity, diabetes, cardiovascular disease, liver disease, and neurocognitive disease.

Recent Findings

Biomarkers of microbial translocation, dysbiosis, or intestinal epithelial integrity have been used to investigate relationships between HIV-associated gut dysfunction and metabolic, cardiovascular, and neurologic complications. Many studies point to worsened comorbidities associated with gut dysfunction in people with HIV (PWH), but some studies show mixed results, and thus, the data are still inconclusive and limited to surrogate biomarkers rather than direct intestinal assessments.

Summary

Inflammation and immune activation stemming from changes in intestinal epithelial integrity and dysbiosis are present in PWH and relate to metabolic, cardiovascular, and neurologic complications of HIV. However, future investigations, especially future studies that directly assess intestinal pathology, are needed to investigate the direct contributory role of gastrointestinal dysfunction to comorbidities of HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lerner AM, Eisinger RW, Fauci AS. Comorbidities in persons with HIV: the lingering challenge. JAMA. 2020;323(1):19–20.

    Article  Google Scholar 

  2. Gallant J, Hsue PY, Shreay S, Meyer N. Comorbidities Among US Patients with prevalent HIV infection—a trend analysis. J Infect Dis. 2017;216(12):1525–33.

    PubMed  Google Scholar 

  3. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71.

    Article  CAS  PubMed  Google Scholar 

  4. Sandler NG, Douek DC. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat Rev Microbiol. 2012;10(9):655–66.

    Article  CAS  PubMed  Google Scholar 

  5. Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis. 2011;203(6):780–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, et al. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. J Infect Dis. 2014;210(8):1228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.

    Article  CAS  PubMed  Google Scholar 

  8. Creely SJ, PG MT, Kusminski CM, Fisher FM, Da Silva NF, Khanolkar M, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol-Endocrinol Metab. 2007;292(3):E740-E7.

    Article  Google Scholar 

  9. Pussinen PJ, Havulinna AS, Lehto M, Sundvall J, Salomaa V. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care. 2011;34(2):392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Invest. 2019;129(10):4050–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pedersen KK, Pedersen M, Trøseid M, Gaardbo JC, Lund TT, Thomsen C, et al. Microbial translocation in HIV infection is associated with dyslipidemia, insulin resistance, and risk of myocardial infarction. J Acquir Immune Defic Syndr. 2013;64(5):9.

    Article  Google Scholar 

  12. Timmons T, Shen C, Aldrovandi G, Rollie A, Gupta SK, Stein JH, et al. Microbial translocation and metabolic and body composition measures in treated and untreated HIV infection. AIDS Research and Human Retroviruses. 2014;30(3):272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moreno-Pérez Ó, Giner L, Reus S, Boix V, Alfayate R, Frances R, et al. Impact of circulating bacterial DNA in long-term glucose homeostasis in non-diabetic patients with HIV infection: cohort study. Eur J Clin Microbiol Infect Dis. 2018;37(2):313–8.

    Article  PubMed  Google Scholar 

  14. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    Article  CAS  PubMed  Google Scholar 

  15. Hartstra AV, Bouter KEC, Bäckhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015;38(1):159–65.

    Article  CAS  PubMed  Google Scholar 

  16. • Dillon SM, Kibbie J, Lee EJ, Guo K, Santiago ML, Austin GL, et al. Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. AIDS. 2017;31(4):511–21 This study demonstrated lower abundance of butyrate-producing bacteria, which are important for maintaining intestinal barrier function, in untreated PWH compared to individuals without HIV. In particular, the decreased abundance of Roseburia intestinalis correlated with markers of microbial translocation and immune activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mave V, Erlandson KM, Gupte N, Balagopal A, Asmuth DM, Campbell TB, et al. Inflammation and change in body weight with antiretroviral therapy initiation in a multinational cohort of HIV-infected adults. J Infect Dis. 2016;214(1):65–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. • El Kamari V, Moser C, Hileman CO, Currier JS, Brown TT, Johnston L, et al. Lower pretreatment gut integrity is independently associated with fat gain on antiretroviral therapy. Clin Infect Dis. 2019;68(8):1394–401 For the first time in PWH, this study showed an association between fat gain and gut dysfunction. Pre-ART I-FABP levels were significant associated with changes in body composition as measured by visceral adipose tissue, total adipose tissue, and body mass index over 96 weeks of ART treatment.

    Article  PubMed  Google Scholar 

  19. • Dirajlal-Fargo S, Moser C, Rodriguez K, El-Kamari V, Funderburg NT, Bowman E, et al. Changes in the fungal marker β-D-glucan after antiretroviral therapy and association with adiposity. Open Forum Infect Dis. 2019;6(11):ofz434 This study highlights the potential role of mycobiome and metabolic complications in PWH by demonstrating the association between fungal translocation marker β-D-glucan and excess trunk and total fat accumulation in PWH over 96 weeks of ART treatment.

    Article  PubMed  PubMed Central  Google Scholar 

  20. • Gogokhia L, Taur Y, Juluru K, Yagan N, Zhu Y-S, Pamer E, et al. Intestinal Dysbiosis and Markers of systemic inflammation in viscerally and generally obese persons living with HIV. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2020;83(1):81–9 This is the first study examining the intestinal dysbiosis by body habitus in PWH, showing that bacterial diversity measured by fecal 16S rDNA sequencing was reduced in visceral and general obesity compared with lean participants and was negatively correlated with sCD14.

    Article  PubMed  Google Scholar 

  21. Koethe JR, Grome H, Jenkins CA, Kalams SA, Sterling TR. The metabolic and cardiovascular consequences of obesity in persons with HIV on long-term antiretroviral therapy. AIDS. 2016;30(1):83–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor BS, So-Armah K, Tate JP, Marconi VC, Koethe JR, Bedimo RJ, et al. HIV and obesity comorbidity increase interleukin 6 but not soluble CD14 or D-dimer. J Acquir Immune Defic Syndr. 2017;75(5):500–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016 Jul;13(7):412–25.

    Article  CAS  PubMed  Google Scholar 

  24. Verna EC. Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in patients with HIV. Lancet Gastroenterol Hepatol. 2017;2(3):211–23.

    Article  PubMed  Google Scholar 

  25. Balagopal A, Philp FH, Astemborski J, Block TM, Mehta A, Long R, et al. Human immunodeficiency virus-related microbial translocation and progression of hepatitis C. Gastroenterology. 2008;135(1):226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maurice JB, Garvey L, Tsochatzis EA, Wiltshire M, Cooke G, Guppy N, et al. Monocyte-macrophage activation is associated with nonalcoholic fatty liver disease and liver fibrosis in HIV monoinfection independently of the gut microbiome and bacterial translocation. AIDS. 2019;33(5):805–14.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou X, Li J, Guo J, Geng B, Ji W, Zhao Q, et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome. 2018;6(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kallio KAE, Hätönen KA, Lehto M, Salomaa V, Männistö S, Pussinen PJ. Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetol. 2015;52(2):395–404.

    Article  CAS  PubMed  Google Scholar 

  29. Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease. J Am Coll Cardiol. 2019;73(16):2089–105.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561–9.

    Article  CAS  PubMed  Google Scholar 

  31. Srinivasa S, Fitch KV, Lo J, Kadar H, Knight R, Wong K, et al. Plaque burden in HIV-infected patients is associated with serum intestinal microbiota-generated trimethylamine. AIDS. 2015;29(4):443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haissman JM, Knudsen A, Hoel H, Kjaer A, Kristoffersen US, Berge RK, et al. Microbiota-dependent marker TMAO is elevated in silent ischemia but is not associated with first-time myocardial infarction in HIV infection. J Acquir Immune Defic Syndr. 2016;71(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  33. Kelesidis T, Kendall MA, Yang OO, Hodis HN, Currier JS. Biomarkers of microbial translocation and macrophage activation: association with progression of subclinical atherosclerosis in HIV-1 infection. J Infect Dis. 2012;206(10):1558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Longenecker CT, Jiang Y, Orringer CE, Gilkeson RC, Debanne S, Funderburg NT, et al. Soluble CD14 is independently associated with coronary calcification and extent of subclinical vascular disease in treated HIV infection. AIDS. 2014;28(7):969–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ancuta P, Kamat A, Kunstman KJ, Kim E-Y, Autissier P, Wurcel A, et al. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One. 2008;3(6):e2516.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lyons JL, Uno H, Ancuta P, Kamat A, Moore DJ, Singer EJ, et al. Plasma sCD14 is a biomarker associated with impaired neurocognitive test performance in attention and learning domains in HIV infection. J Acquir Immune Defic Syndr. 2011;57(5):371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muñoz-Nevárez LA, Imp BM, Eller MA, Kiweewa F, Maswai J, Polyak C, et al. Monocyte activation, HIV, and cognitive performance in East Africa. J Neurovirol. 2020;26(1):52–9.

    Article  PubMed  Google Scholar 

  38. Krebs SJ, Slike BM, Sithinamsuwan P, Allen IE, Chalermchai T, Tipsuk S, et al. Sex differences in soluble markers vary before and after the initiation of antiretroviral therapy in chronically HIV-infected individuals. AIDS. 2016;30(10):1533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Imp BM, Rubin LH, Tien PC, Plankey MW, Golub ET, French AL, et al. Monocyte activation is associated with worse cognitive performance in virologically suppressed HIV-infected women. J Infect Dis. 2016;2016:jiw506.

    Google Scholar 

  40. Royal W 3rd, Cherner M, Burdo TH, Umlauf A, Letendre SL, Jumare J, et al. Associations between cognition, gender and monocyte activation among HIV infected individuals in Nigeria. PLoS One. 2016;11(2):e0147182.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kamkwalala AR, Wang X, Maki PM, Williams DW, Valcour VG, Damron A, et al. Brief report: higher peripheral monocyte activation markers are associated with smaller frontal and temporal cortical volumes in women with HIV. J Acquir Immune Defic Syndr. 2020;84(1):54–59.

  42. Gianella S, Letendre SL, Iudicello J, Franklin D, Gaufin T, Zhang Y, et al. Plasma (1 → 3)-β-D-glucan and suPAR levels correlate with neurocognitive performance in people living with HIV on antiretroviral therapy: a CHARTER analysis. J Neurovirol. 2019;25(6):837–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoenigl M, de Oliveira MF, Pérez-Santiago J, Zhang Y, Morris S, McCutchan AJ, et al. (1→3)-β-D-Glucan levels correlate with neurocognitive functioning in HIV-infected persons on suppressive antiretroviral therapy: a cohort study. Medicine. 2016;95(11):e3162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tuddenham SA, Koay WLA, Zhao N, White JR, Ghanem KG, Sears CL, et al. The impact of human immunodeficiency virus infection on gut microbiota α-diversity: an individual-level meta-analysis. Clin Infect Dis. 2020;70(4):615–27.

    Article  PubMed  Google Scholar 

  45. Pase MP, Himali JJ, Beiser AS, DeCarli C, McGrath ER, Satizabal CL, et al. Association of CD14 with incident dementia and markers of brain aging and injury. Neurology. 2020;94(3):e254–e66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Michelini Z, Baroncelli S, Fantauzzi A, Pasquale C, Galluzzo CM, Sanchez M, et al. Reduced plasma levels of sCD14 and I-FABP in HIV-infected patients with mesalazine-treated ulcerative colitis. HIV Clin Trials. 2016;17(2):49–54.

    Article  CAS  PubMed  Google Scholar 

  47. Munford RS. Endotoxemia-menace, marker, or mistake? J Leukoc Biol. 2016;100(4):687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Lo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Complications of HIV and Antiretroviral Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, J.H., Mukerji, S.S., Russo, S.C. et al. Gastrointestinal Dysfunction and HIV Comorbidities. Curr HIV/AIDS Rep 18, 57–62 (2021). https://doi.org/10.1007/s11904-020-00537-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-020-00537-8

Keywords

Navigation