Skip to main content

Advertisement

Log in

Inflammation and HIV Transmission in Sub-Saharan Africa

  • The Global Epidemic (SH Vermund, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

While the per-contact risk of sexual HIV transmission is relatively low, it is fourfold higher in sub-Saharan Africa, and this may partly explain the major global disparities that exist in HIV prevalence. Genital immune parameters are key determinants of HIV transmission risk, including epithelial integrity and the presence of highly HIV-susceptible intraepithelial or submucosal CD4+ T cell target cells. Biological parameters that may enhance mucosal HIV susceptibility in highly HIV-affected regions of sub-Saharan Africa include increased levels of mucosal inflammation, which can affect both epithelial integrity and target cell availability, as well as the increased mucosal surface area that is afforded by an intact foreskin, contraceptive choices, and intravaginal practices. There are multifactorial causes for increased mucosal inflammation, with the prevalence and nature of common co-infections being particularly relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fact sheet: World AIDS Day 2014 [http://www.unaids.org/en/resources/campaigns/World-AIDS-Day-Report-2014/factsheet%5D. In: UNAIDS; 2014.

  2. Holmes CB, Blandford JM, Sangrujee N, Stewart SR, DuBois A, Smith TR, et al. PEPFAR’s past and future efforts to cut costs, improve efficiency, and increase the impact of global HIV programs. Health Aff (Millwood). 2012;31:1553–60.

    Article  Google Scholar 

  3. Hladik F, McElrath MJ. Setting the stage: host invasion by HIV. Nat Rev Immunol. 2008;8:447–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Baeten JM, Kahle E, Lingappa JR, Coombs RW, Delany-Moretlwe S, Nakku-Joloba E, et al. Genital HIV-1 RNA predicts risk of heterosexual HIV-1 transmission. Sci Transl Med. 2011;3:77ra29. This was the first demonstration that the viral load in the genital tract is directly correlated with the risk of HIV transmission to a sexual partner.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Pilcher CD, Joaki G, Hoffman IF, Martinson FE, Mapanje C, Stewart PW, et al. Amplified transmission of HIV-1: comparison of HIV-1 concentrations in semen and blood during acute and chronic infection. AIDS. 2007;21:1723–30.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Pilcher CD, Tien HC, Eron Jr JJ, Vernazza PL, Leu SY, Stewart PW, et al. Brief but efficient: acute HIV infection and the sexual transmission of HIV. J Infect Dis. 2004;189:1785–92.

    Article  PubMed  Google Scholar 

  7. Cohen MS. HIV and sexually transmitted diseases: lethal synergy. Top HIV Med. 2004;12:104–7.

    PubMed  Google Scholar 

  8. Cohen MS, Hoffman IF, Royce RA, Kazembe P, Dyer JR, Daly CC, et al. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. AIDSCAP Malawi Res Group Lancet. 1997;349:1868–73.

    CAS  Google Scholar 

  9. Kalichman SC, Cage M, Barnett T, Tharnish P, Rompa D, Austin J, et al. Human immunodeficiency virus in semen and plasma: investigation of sexual transmission risk behavioral correlates. AIDS Res Hum Retrovir. 2001;17:1695–703.

    Article  CAS  PubMed  Google Scholar 

  10. Liu CM, Osborne BJ, Hungate BA, Shahabi K, Huibner S, Lester R, et al. The semen microbiome and its relationship with local immunology and viral load in HIV infection. PLoS Pathog. 2014;10:e1004262.

    Article  PubMed Central  PubMed  Google Scholar 

  11. McKinnon LR, Kaul R. Quality and quantity: mucosal CD4+ T cells and HIV susceptibility. Curr Opin HIV AIDS. 2012;7:195–202.

    Article  CAS  PubMed  Google Scholar 

  12. Low N, Chersich MF, Schmidlin K, Egger M, Francis SC, van de Wijgert JH, et al. Intravaginal practices, bacterial vaginosis, and HIV infection in women: individual participant data meta-analysis. PLoS Med. 2011;8:e1000416.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS. Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS. 2008;22:1493–501.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Rebbapragada A, Kaul R. More than their sum in your parts: the mechanisms that underpin the mutually advantageous relationship between HIV and sexually transmitted infections. Drug Discov Today: Dis Mech. 2007;4:237–46.

    Article  Google Scholar 

  15. Heffron R, Donnell D, Rees H, Celum C, Mugo N, Were E, et al. Use of hormonal contraceptives and risk of HIV-1 transmission: a prospective cohort study. Lancet Infect Dis. 2012;12:19–26.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Morrison CS, Chen PL, Kwok C, Baeten JM, Brown J, Crook AM, et al. Hormonal contraception and the risk of HIV acquisition: an individual participant data meta-analysis. PLoS Med. 2015;12:e1001778. Short of a randomized clinical trial, this is the strongest form of evidence linking injectable DMPA use with an increased risk of HIV acquisition.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Polis CB, Curtis KM. Use of hormonal contraceptives and HIV acquisition in women: a systematic review of the epidemiological evidence. Lancet Infect Dis. 2013;13:797–808.

    Article  PubMed  Google Scholar 

  18. Boily MC, Baggaley RF, Wang L, Masse B, White RG, Hayes RJ, et al. Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies. Lancet Infect Dis. 2009;9:118–29. Metaanalysis demonstrating a four to ten-fold increase in the per-exposure risk of sexual HIV transmission in lower income countries.

    Article  PubMed  Google Scholar 

  19. Glynn JR, Carael M, Auvert B, Kahindo M, Chege J, Musonda R, et al. Why do young women have a much higher prevalence of HIV than young men? A study in Kisumu, Kenya and Ndola, Zambia. AIDS. 2001;15 Suppl 4:S51–60.

    Article  PubMed  Google Scholar 

  20. Kaul R, Cohen CR, Chege D, Yi TJ, Tharao W, McKinnon LR, et al. Biological factors that may contribute to regional and racial disparities in HIV prevalence. Am J Reprod Immunol. 2011;65:317–24.

    Article  PubMed  Google Scholar 

  21. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329:1168–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yi TJ, Shannon B, McKinnon L, Prodger JL, Kaul R. Genital immunology and HIV susceptibility in young women. Am J Reprod Immunol. 2013;69:74–9.

    Article  PubMed  Google Scholar 

  23. Kaul R, Pettengell C, Sheth PM, Sunderji S, Biringer A, Macdonald K, et al. The genital tract immune milieu: an important determinant of HIV susceptibility and secondary transmission. J Reprod Immunol. 2008;77:32–40.

    Article  CAS  PubMed  Google Scholar 

  24. Haase AT. Targeting early infection to prevent HIV-1 mucosal transmission. Nature. 2010;464:217–23.

    Article  CAS  PubMed  Google Scholar 

  25. Carnathan DG, Wetzel KS, Yu J, Lee ST, Johnson BA, Paiardini M, et al. Activated CD4+CCR5+ T cells in the rectum predict increased SIV acquisition in SIVGag/Tat-vaccinated rhesus macaques. Proc Natl Acad Sci U S A. 2015;112:518–23. While similar human studies would be challenging to perform, in a primate model the probability of SIV acquisition after rectal challenge was directly correlated with the pre-existing frequency of mucosal CD4 + CCR5+ T cells.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Barnabas SL, Jaspan HB, Dabee S, Jaumdally SZ, Gamieldien H, Lewis D, et al. Knowing who we are trying to protect: an assessment of HIV risk in South African adolescent females (Abstract P13:03). Cape Town, SA: HIV Research for Prevention (R4P); 2014.

    Google Scholar 

  27. Alvarez Y, Tuen M, Shen G, Nawaz F, Arthos J, Wolff MJ, et al. Preferential HIV infection of CCR6+ Th17 cells is associated with higher levels of virus receptor expression and lack of CCR5 ligands. J Virol. 2013;87:10843–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. McKinnon LR, Nyanga B, Chege D, Izulla P, Kimani M, Huibner S, et al. Characterization of a human cervical CD4+ T cell subset coexpressing multiple markers of HIV susceptibility. J Immunol. 2011;187:6032–42.

    Article  CAS  PubMed  Google Scholar 

  29. Rodriguez-Garcia M, Barr FD, Crist SG, Fahey JV, Wira CR. Phenotype and susceptibility to HIV infection of CD4+ Th17 cells in the human female reproductive tract. Mucosal Immunol. 2014;7:1375–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bamias G, Arseneau KO, Cominelli F. Cytokines and mucosal immunity. Curr Opin Gastroenterol. 2014;30:547–52.

    Article  CAS  PubMed  Google Scholar 

  31. Dinarello CA. Proinflammatory cytokines. Chest. 2000;118:503–8.

    Article  CAS  PubMed  Google Scholar 

  32. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6:e1000852.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Gianella S, Strain MC, Rought SE, Vargas MV, Little SJ, Richman DD, et al. Associations between virologic and immunologic dynamics in blood and in the male genital tract. J Virol. 2012;86:1307–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Olivier AJ, Masson L, Ronacher K, Walzl G, Coetzee D, Lewis DA, et al. Distinct cytokine patterns in semen influence local HIV shedding and HIV target cell activation. J Infect Dis. 2014.

  35. Sheth PM, Danesh A, Shahabi K, Rebbapragada A, Kovacs C, Dimayuga R, et al. HIV-specific CD8+ lymphocytes in semen are not associated with reduced HIV shedding. J Immunol. 2005;175:4789–96.

    Article  CAS  PubMed  Google Scholar 

  36. Xu C, Politch JA, Tucker L, Mayer KH, Seage 3rd GR, Anderson DJ. Factors associated with increased levels of human immunodeficiency virus type 1 DNA in semen. J Infect Dis. 1997;176:941–7.

    Article  CAS  PubMed  Google Scholar 

  37. Gumbi PP, Nkwanyana NN, Bere A, Burgers WA, Gray CM, Williamson AL, et al. Impact of mucosal inflammation on cervical human immunodeficiency virus (HIV-1)-specific CD8 T-cell responses in the female genital tract during chronic HIV infection. J Virol. 2008;82:8529–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kaul R, Rebbapragada A, Hirbod T, Wachihi C, Ball TB, Plummer FA, et al. Genital levels of soluble immune factors with anti-HIV activity may correlate with increased HIV susceptibility. AIDS. 2008;22:2049–51.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Nkwanyana NN, Gumbi PP, Roberts L, Denny L, Hanekom W, Soares A, et al. Impact of human immunodeficiency virus 1 infection and inflammation on the composition and yield of cervical mononuclear cells in the female genital tract. Immunology. 2009;128:e746–757.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Arnold KB, Burgener A, Berse K, Dunphy L, Shahabi K, Abou M, et al. Identification of mucosal proteomic profiles associated with female genital tract inflammation (Abstract #P40.20). Cape Town, SA: HIV Research for Prevention (R4P); 2014.

    Google Scholar 

  41. Chege D, Chai Y, Huibner S, Kain T, Wachihi C, Kimani M, et al. Blunted IL17/IL22 and pro-inflammatory cytokine responses in the genital tract and blood of HIV-exposed, seronegative female sex workers in Kenya. PLoS One. 2012;7:e43670.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lajoie J, Juno J, Burgener A, Rahman S, Mogk K, Wachihi C, et al. A distinct cytokine and chemokine profile at the genital mucosa is associated with HIV-1 protection among HIV-exposed seronegative commercial sex workers. Mucosal Immunol. 2012;5:277–87.

    Article  CAS  PubMed  Google Scholar 

  43. McLaren PJ, Ball TB, Wachihi C, Jaoko W, Kelvin DJ, Danesh A, et al. HIV-exposed seronegative commercial sex workers show a quiescent phenotype in the CD4+ T cell compartment and reduced expression of HIV-dependent host factors. J Infect Dis. 2010;202 Suppl 3:S339–344.

    Article  CAS  PubMed  Google Scholar 

  44. Prodger JL, Hirbod T, Kigozi G, Nalugoda F, Reynolds SJ, Galiwango R, et al. Immune correlates of HIV exposure without infection in foreskins of men from Rakai, Uganda. Mucosal Immunol. 2014;7:634–44. In this rigorously blinded study, repeated sexual exposure to HIV without infection was associated with reduced levels of T cell activation in the foreskin of uncircumcised men.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Yao XD, Omange RW, Henrick BM, Lester RT, Kimani J, Ball TB, et al. Acting locally: innate mucosal immunity in resistance to HIV-1 infection in Kenyan commercial sex workers. Mucosal Immunol. 2014;7:268–79.

    Article  CAS  PubMed  Google Scholar 

  46. Kahle EM, Bolton M, Hughes JP, Donnell D, Celum C, Lingappa JR, et al. Plasma cytokine levels and risk of HIV type 1 (HIV-1) transmission and acquisition: a nested case-control study among HIV-1-serodiscordant couples. J Infect Dis. 2014.

  47. Naranbhai V, Abdool Karim SS, Altfeld M, Samsunder N, Durgiah R, Sibeko S, et al. Innate immune activation enhances HIV acquisition in women, diminishing the effectiveness of tenofovir microbicide gel. J Infect Dis. 2012;206:993–1001. In references #46 and #47, increased systemic inflammation and immune activation was directly associated with in vivo HIV acquisition.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Levinson P, Kaul R, Kimani J, Ngugi E, Moses S, MacDonald KS, et al. Levels of innate immune factors in genital fluids: association of alpha defensins and LL-37 with genital infections and increased HIV acquisition. AIDS. 2009;23:309–17.

    Article  CAS  PubMed  Google Scholar 

  49. Passmore JS. Genital tract inflammation and susceptibility to HIV infection in women from the CAPRISA 004 microbicide trial of tenofovir gel (Webcast at: http://aidsvac.capitalreach.com/console/player/19096?mediaType=audio). In: Boston, MA: AIDS Vaccine; 2012.

  50. Koesters SA, Matu L, Kiama P, Anzala O, Embree J, Plummer FA, et al. Elevation of immune activation in Kenyan women is associated with alterations in immune function: implications for vaccine development. J Clin Immunol. 2004;24:702–9.

    Article  CAS  PubMed  Google Scholar 

  51. Clerici M, Butto S, Lukwiya M, Saresella M, Declich S, Trabattoni D, et al. Immune activation in Africa is environmentally-driven and is associated with upregulation of CCR5. Italian-Ugandan AIDS Project. AIDS. 2000;14:2083–92.

    Article  CAS  PubMed  Google Scholar 

  52. Cohen CR, Moscicki AB, Scott ME, Ma Y, Shiboski S, Bukusi E, et al. Increased levels of immune activation in the genital tract of healthy young women from sub-Saharan Africa. AIDS. 2010;24:2069–74. This cross-sectional study demonstrated substantially increased T cell activation in the cervical mucosa of Kenyan vs. US women, independent of genital co-infections.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Smith JS, Robinson NJ. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis. 2002;186 Suppl 1:S3–28.

    Article  PubMed  Google Scholar 

  54. Rotermann M, Langlois KA, Severini A, Totten S. Prevalence of Chlamydia trachomatis and herpes simplex virus type 2: results from the 2009 to 2011 Canadian health measures survey. Health Rep. 2013;24:10–5.

    Google Scholar 

  55. Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS. 2006;20:73–83.

    Article  PubMed  Google Scholar 

  56. Prodger JL, Gray R, Kigozi G, Nalugoda F, Galiwango R, Nehemiah K, et al. Impact of asymptomatic Herpes simplex virus-2 infection on T cell phenotype and function in the foreskin. AIDS. 2012;26:1319–22.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Rebbapragada A, Wachihi C, Pettengell C, Sunderji S, Huibner S, Jaoko W, et al. Negative mucosal synergy between herpes simplex type 2 and HIV in the female genital tract. AIDS. 2007;21:589–98.

    Article  PubMed  Google Scholar 

  58. Shannon B, Yi TJ, Thomas-Pavanel J, Chieza L, Janakiram P, Saunders M, et al. Impact of asymptomatic herpes simplex virus type 2 infection on mucosal homing and immune cell subsets in the blood and female genital tract. J Immunol. 2014;192:5074–82.

    Article  CAS  PubMed  Google Scholar 

  59. Yi TJ, Shannon B, Chieza L, Su D, Saunders M, Tharao W, et al. Valacyclovir therapy does not reverse herpes-associated alterations in cervical immunology: a randomized, placebo-controlled crossover trial. J Infect Dis. 2014.

  60. Celum C, Wald A, Hughes J, Sanchez J, Reid S, Delany-Moretlwe S, et al. Effect of aciclovir on HIV-1 acquisition in herpes simplex virus 2 seropositive women and men who have sex with men: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371:2109–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Watson-Jones D, Weiss HA, Rusizoka M, Changalucha J, Baisley K, Mugeye K, et al. Effect of herpes simplex suppression on incidence of HIV among women in Tanzania. N Engl J Med. 2008;358:1560–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Johnston C, Saracino M, Kuntz S, Magaret A, Selke S, Huang ML, et al. Standard-dose and high-dose daily antiviral therapy for short episodes of genital HSV-2 reactivation: three randomised, open-label, cross-over trials. Lancet. 2012;379:641–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Abu-Raddad LJ, Magaret AS, Celum C, Wald A, Longini Jr IM, Self SG, et al. Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa. PLoS One. 2008;3:e2230.

    Article  PubMed Central  PubMed  Google Scholar 

  64. van de Wijgert JH, Morrison CS, Brown J, Kwok C, Van Der Pol B, Chipato T, et al. Disentangling contributions of reproductive tract infections to HIV acquisition in African women. Sex Transm Dis. 2009;36:357–64.

    Article  PubMed  Google Scholar 

  65. Masson L, Mlisana K, Little F, Werner L, Mkhize NN, Ronacher K, et al. Defining genital tract cytokine signatures of sexually transmitted infections and bacterial vaginosis in women at high risk of HIV infection: a cross-sectional study. Sex Transm Infect. 2014;90:580–7.

    Article  PubMed  Google Scholar 

  66. Mlisana K, Naicker N, Werner L, Roberts L, van Loggerenberg F, Baxter C, et al. Symptomatic vaginal discharge is a poor predictor of sexually transmitted infections and genital tract inflammation in high-risk women in South Africa. J Infect Dis. 2012;206:6–14.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Kenyon C, Colebunders R, Crucitti T. The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol. 2013;209:505–23.

    Article  PubMed  Google Scholar 

  68. Bradshaw CS, Morton AN, Hocking J, Garland SM, Morris MB, Moss LM, et al. High recurrence rates of bacterial vaginosis over the course of 12 months after oral metronidazole therapy and factors associated with recurrence. J Infect Dis. 2006;193:1478–86.

    Article  PubMed  Google Scholar 

  69. Eschenbach DA. Bacterial vaginosis: resistance, recurrence, and/or reinfection? Clin Infect Dis. 2007;44:220–1.

    Article  CAS  PubMed  Google Scholar 

  70. Cohen CR, Lingappa JR, Baeten JM, Ngayo MO, Spiegel CA, Hong T, et al. Bacterial vaginosis associated with increased risk of female-to-male HIV-1 transmission: a prospective cohort analysis among African couples. PLoS Med. 2012;9:e1001251.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Benning L, Golub ET, Anastos K, French AL, Cohen M, Gilbert D, et al. Comparison of lower genital tract microbiota in HIV-infected and uninfected women from Rwanda and the US. PLoS One. 2014;9:e96844.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Pendharkar S, Magopane T, Larsson PG, de Bruyn G, Gray GE, Hammarstrom L, et al. Identification and characterisation of vaginal lactobacilli from South African women. BMC Infect Dis. 2013;13:43.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4680–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Jourdan PM, Holmen SD, Gundersen SG, Roald B, Kjetland EF. HIV target cells in Schistosoma haematobium-infected female genital mucosa. Am J Trop Med Hyg. 2011;85:1060–4.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Kleppa E, Ramsuran V, Zulu S, Karlsen GH, Bere A, Passmore JA, et al. Effect of female genital schistosomiasis and anti-schistosomal treatment on monocytes, CD4+ T-cells and CCR5 expression in the female genital tract. PLoS One. 2014;9:e98593.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Chenine AL, Shai-Kobiler E, Steele LN, Ong H, Augostini P, Song R, et al. Acute Schistosoma mansoni infection increases susceptibility to systemic SHIV clade C infection in rhesus macaques after mucosal virus exposure. PLoS Negl Trop Dis. 2008;2:e265.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Siddappa NB, Hemashettar G, Shanmuganathan V, Semenya AA, Sweeney ED, Paul KS, et al. Schistosoma mansoni enhances host susceptibility to mucosal but not intravenous challenge by R5 Clade C SHIV. PLoS Negl Trop Dis. 2011;5:e1270.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Kassu A, Tsegaye A, Wolday D, Petros B, Aklilu M, Sanders EJ, et al. Role of incidental and/or cured intestinal parasitic infections on profile of CD4+ and CD8+ T cell subsets and activation status in HIV-1 infected and uninfected adult Ethiopians. Clin Exp Immunol. 2003;132:113–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Wolday D, Tegbaru B, Kassu A, Messele T, Coutinho R, van Baarle D, et al. Expression of chemokine receptors CCR5 and CXCR4 on CD4+ T cells and plasma chemokine levels during treatment of active tuberculosis in HIV-1-coinfected patients. J Acquir Immune Defic Syndr. 2005;39:265–71.

    Article  CAS  PubMed  Google Scholar 

  80. Chege D, Higgins SJ, McDonald CR, Shahabi K, Huibner S, Kain T, et al. Murine Plasmodium chabaudi malaria increases mucosal immune activation and the expression of putative HIV susceptibility markers in the gut and genital mucosae. J Acquir Immune Defic Syndr. 2014;65:517–25.

    Article  CAS  PubMed  Google Scholar 

  81. Baggaley RF, Hollingsworth TD. Brief report: HIV-1 transmissions during asymptomatic infection: exploring the impact of changes in HIV-1 viral load due to coinfections. J Acquir Immune Defic Syndr. 2015;68:594–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Ralph LJ, McCoy SI, Shiu K, Padian NS. Hormonal contraceptive use and women’s risk of HIV acquisition: a meta-analysis of observational studies. Lancet Infect Dis. 2015;15:181–9.

    Article  PubMed  Google Scholar 

  83. Byrne EH, Anahar M, Doherty K, Olson G, Bowman B, Padavattan N, et al. Injectable contraceptive use correlates with increased HIV target cells at the cervix in young South African women (Abstract #352). Cape Town: HIV Research For Prevention (R4P); 2014.

    Google Scholar 

  84. Mitchell CM, McLemore L, Westerberg K, Astronomo R, Smythe K, Gardella C, et al. Long-term effect of depot medroxyprogesterone acetate on vaginal microbiota, epithelial thickness and HIV target cells. J Infect Dis. 2014;210:651–5.

    Article  CAS  PubMed  Google Scholar 

  85. Fahrbach KM, Malykhina O, Stieh DJ, Hope TJ. Differential binding of IgG and IgA to mucus of the female reproductive tract. PLoS One. 2013;8:e76176.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Shukair SA, Allen SA, Cianci GC, Stieh DJ, Anderson MR, Baig SM, et al. Human cervicovaginal mucus contains an activity that hinders HIV-1 movement. Mucosal Immunol. 2013;6:427–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. van de Wijgert JH, Verwijs MC, Turner AN, Morrison CS. Hormonal contraception decreases bacterial vaginosis but oral contraception may increase candidiasis: implications for HIV transmission. AIDS. 2013;27:2141–53.

    Article  PubMed  Google Scholar 

  88. Brown RC, Brown JE, Ayowa OB. Vaginal inflammation in Africa. N Engl J Med. 1992;327:572.

    Article  CAS  PubMed  Google Scholar 

  89. Doherty K, Anahtar M, Ghebremichael M, Thogabekale C, Padavattan N, Dong K, et al. Effects of Intra-vaginal drying agents on mucosal immune activation and risk for HIV acquisition in South African women (Abstract #P40.08). Cape Town: HIV Research For Prevention (R4P); 2014.

    Google Scholar 

  90. Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, Nalugoda F, et al. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet. 2007;369:657–66.

    Article  PubMed  Google Scholar 

  91. Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN, et al. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet. 2007;369:643–56.

    Article  PubMed  Google Scholar 

  92. Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med. 2005;2:e298.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Kigozi G, Wawer M, Ssettuba A, Kagaayi J, Nalugoda F, Watya S, et al. Foreskin surface area and HIV acquisition in Rakai, Uganda (size matters). AIDS. 2009;23:2209–13.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Gray RH, Wawer MJ, Kigozi G. Programme science research on medical male circumcision scale-up in sub-Saharan Africa. Sex Transm Infect. 2013;89:345–9.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Rupert Kaul, Jessica Prodger, Vineet Joag, Brett Shannon, Sergey Yegorov, Ronald Galiwango, and Lyle McKinnon declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert Kaul.

Additional information

This article is part of the Topical Collection on The Global Epidemic

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaul, R., Prodger, J., Joag, V. et al. Inflammation and HIV Transmission in Sub-Saharan Africa. Curr HIV/AIDS Rep 12, 216–222 (2015). https://doi.org/10.1007/s11904-015-0269-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-015-0269-5

Keywords

Navigation