Skip to main content

Advertisement

Log in

Portal Hypertension in NASH: Is It Different from Other Aetiologies?

  • Portal Hypertension (J Gonzalez-Abraldes and E Tsochatzis, Section Editors)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In non-alcoholic fatty liver disease (NAFLD), an increased portal pressure is observed before signs of cirrhosis or even inflammation or fibrosis are histologically present. This review describes the differences between the mechanisms of cirrhotic portal hypertension (PHT) and PHT in non-cirrhotic NAFLD.

Recent Findings

The increased portal pressure in NAFLD is primarily a result of an increased intrahepatic vascular resistance. Vasodilation is decreased by endothelial dysfunction and the sensitivity to vasoconstrictors is increased. Furthermore, the activation of hepatic stellate cells and the presence of microvascular thrombosis could also be involved in the pathogenesis of PHT in NAFLD.

Summary

Although the increased portal pressure in early NAFLD is not considered clinically significant PHT, it might play a role in the pathophysiology of NAFLD. Due to the increased intrahepatic vascular resistance, the hepatic blood flow is impaired and hence the oxygen delivery is decreased, potentially triggering transition to steatohepatitis. The underlying mechanisms of these alterations therefore represent promising targets for pharmacological treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

CBDL:

Common bile duct ligation

COX:

Cyclooxygenase

eNOS:

Endothelial nitric oxide synthase

ET:

Endothelin

HABR:

Hepatic arterial buffer response

HSC:

Hepatic stellate cell

HVPG:

Hepatic venous pressure gradient

HFD:

High-fat diet

H2S:

Hydrogen sulphide

HIF:

Hypoxia-inducible factor

IHVR:

Intrahepatic vascular resistance

LT:

Leukotriene

MCD:

Methionine-choline-deficient diet

NO:

Nitric oxide

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

OSA:

Obstructive sleep apnoea

PGF:

Placental growth factor

PHT:

Portal hypertension

PGI2:

Prostacyclin

ROS:

Reactive oxygen species

TX:

Thromboxane

TXAS:

Thromboxane synthase

TNF-α:

Tumour necrosis factor α

VEGF:

Vascular endothelial growth factor

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. EASL. EASL–EASD–EASO. Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64:1388–402. https://doi.org/10.1007/s00125-016-3910-y.

    Article  CAS  Google Scholar 

  2. Francque SM, Van der Graaff D, Kwanten WJ. Non-alcoholic fatty liver disease and cardiovascular risk: pathophysiological mechanisms and implications. J Hepatol. 2016;65:425–43. https://doi.org/10.1016/j.ijcard.2012.09.085.

    Article  CAS  PubMed  Google Scholar 

  3. Francque S, Verrijken A, Mertens I, Hubens G, Van Marck E, Pelckmans P, et al. Noncirrhotic human nonalcoholic fatty liver disease induces portal hypertension in relation to the histological degree of steatosis. Eur J Gastroenterol Hepatol. 2010;22:1449–57. https://doi.org/10.1097/MEG.0b013e32833f14a1.

    Article  PubMed  Google Scholar 

  4. Pasarín M, La Mura V, Gracia-Sancho J, García-Calderó H, Rodríguez-Vilarrupla A, García-Pagán JC, et al. Sinusoidal endothelial dysfunction precedes inflammation and fibrosis in a model of NAFLD. PLoS One. 2012;7. https://doi.org/10.1371/journal.pone.0032785.

  5. Francque S, Wamutu S, Chatterjee S, Van Marck E, Herman A, Ramon A, et al. Non-alcoholic steatohepatitis induces non-fibrosis-related portal hypertension associated with splanchnic vasodilation and signs of a hyperdynamic circulation in vitro and in vivo in a rat model. Liver Int. 2009;30:365–75. https://doi.org/10.1111/j.1478-3231.2009.02136.x.

    Article  CAS  PubMed  Google Scholar 

  6. Francque S, Laleman W, Verbeke L, Van Steenkiste C, Casteleyn C, Kwanten W, et al. Increased intrahepatic resistance in severe steatosis: endothelial dysfunction, vasoconstrictor overproduction and altered microvascular architecture. Lab Investig. 2012;92:1428–39. https://doi.org/10.1038/labinvest.2012.103.

    Article  CAS  PubMed  Google Scholar 

  7. •• Van der Graaff D, Kwanten WJ, Francque SM. The potential role of vascular alterations and subsequent impaired liver blood flow and hepatic hypoxia in the pathophysiology of non-alcoholic steatohepatitis. Med Hypotheses. 2018. https://doi.org/10.1016/j.mehy.2018.11.014 Further in-depth elaboration on the role of vascular alterations in NAFLD and its potential role in the pathophysiology and/or progression of the disease.

  8. Van Leeuwen DJ, Howe SC, Scheuer PJ, Sherlock S, Sherlock S. Portal hypertension in chronic hepatitis : relationship to morphological changes. Gut. 1990;31:339–43.

    Article  PubMed  PubMed Central  Google Scholar 

  9. McCuskey RS, Ito Y, Robertson GR, McCuskey MK, Perry M, Farrell GC. Hepatic microvascular dysfunction during evolution of dietary steatohepatitis in mice. Hepatology. 2004;40:386–93. https://doi.org/10.1002/hep.20302.

    Article  PubMed  Google Scholar 

  10. Coulon S, Legry V, Heindryckx F, Van Steenkiste C, Casteleyn C, Olievier K, et al. Role of vascular endothelial growth factor in the pathophysiology of nonalcoholic steatohepatitis in two rodent models. Hepatology. 2013;57:1793–805. https://doi.org/10.1002/hep.26219.

    Article  CAS  PubMed  Google Scholar 

  11. • Lefere S, Van de Velde F, Hoorens A, Raevens S, Van Campenhout S, Vandierendonck A, et al. Angiopoietin-2 as therapeutic target for pathological angiogenesis and inflammation in non-alcoholic steatohepatitis. J Hepatol. 2018;68:S329. https://doi.org/10.1016/S0168-8278(18)30878-X This recent paper confirms the importance of angiogenesis in early NAFLD and the potential to influence angiogenesis therapeutically.

    Article  Google Scholar 

  12. Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis - Current status and future directions. J Hepatol. 2014;61:912–24. https://doi.org/10.1016/j.jhep.2014.05.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bosch J, Groszmann RJ, Shah VH. Evolution in the understanding of the pathophysiological basis of portal hypertension: how changes in paradigm are leading to successful new treatments. J Hepatol. 2015;62:S121–30. https://doi.org/10.1016/j.jhep.2015.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gonzalez-Paredes FJ, Hernández Mesa G, Morales Arraez D, Marcelino Reyes R, Abrante B, Diaz-Flores F, et al. Contribution of cyclooxygenase end products and oxidative stress to intrahepatic endothelial dysfunction in early non-alcoholic fatty liver disease. PLoS One. 2016;11:1–15. https://doi.org/10.1371/journal.pone.0156650.

    Article  CAS  Google Scholar 

  15. Morello E, Sutti S, Foglia B, Novo E, Cannito S, Bocca C, et al. Hypoxia-inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidine-rich glycoprotein. Hepatology. 2018;67:2196–214. https://doi.org/10.1002/hep.29754.

    Article  CAS  PubMed  Google Scholar 

  16. Coulon S, Francque S, Colle I, Verrijken A, Blomme B, Heindryckx F, et al. Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease. Cytokine. 2012;59:442–9. https://doi.org/10.1016/j.cyto.2012.05.001.

    Article  CAS  PubMed  Google Scholar 

  17. Funyu J, Mochida S, Inao M, Matsui A, Fujiwara K. VEGF can act as vascular permeability factor in the hepatic sinusoids through upregulation of porosity of endothelial cells. Biochem Biophys Res Commun. 2001;280:481–5. https://doi.org/10.1006/bbrc.2000.4148.

    Article  CAS  PubMed  Google Scholar 

  18. Van der Graaff D, Kwanten WJ, Couturier FJ, Govaerts JS, Verlinden W, Brosius I, et al. Severe steatosis induces portal hypertension by systemic arterial hyporeactivity and hepatic vasoconstrictor hyperreactivity in rats. Lab Investig. 2018;98:1263–75. https://doi.org/10.1038/s41374-017-0018-z.

    Article  PubMed  Google Scholar 

  19. Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol. 2007;46:927–34. https://doi.org/10.1016/j.jhep.2007.02.006.

    Article  CAS  PubMed  Google Scholar 

  20. Van de Casteele M, van Pelt JF, Nevens F, Fevery J, Reichen J. Low NO bioavailability in CCI4 cirrhotic rat livers might result from low NO synthesis combined with decreased superoxide dismutase activity allowing superoxide-mediated NO breakdown: a comparison of two portal hypertensive rat models with healthy control. Comp Hepatol. 2003;2:1–8. https://doi.org/10.1186/1476-5926-2-2.

    Article  Google Scholar 

  21. Perri RE. Defects in cGMP-PKG pathway contribute to impaired NO-dependent responses in hepatic stellate cells upon activation. AJP Gastrointest Liver Physiol. 2006;290:G535–42. https://doi.org/10.1152/ajpgi.00297.2005.

    Article  CAS  Google Scholar 

  22. Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, et al. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology. 2005;42:539–48. https://doi.org/10.1002/hep.20817.

    Article  CAS  PubMed  Google Scholar 

  23. Distrutti E, Mencarelli A, Santucci L, Renga B, Orlandi S, Donini A, et al. The methionine connection: homocysteine and hydrogen sulfide exert opposite effects on hepatic microcirculation in rats. Hepatology. 2008;47:659–67. https://doi.org/10.1002/hep.22037.

    Article  CAS  PubMed  Google Scholar 

  24. Laleman W, Landeghem L, Wilmer A, Fevery J, Nevens F. Portal hypertension: from pathophysiology to clinical practice. Liver Int. 2005;25:1079–90. https://doi.org/10.1111/j.1478-3231.2005.01163.x.

    Article  CAS  PubMed  Google Scholar 

  25. Graupera M, García-Pagán JC, Abraldes JG, Peralta C, Bragulat M, Corominola H, et al. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology. 2003;37:172–81. https://doi.org/10.1053/jhep.2003.50004.

    Article  CAS  PubMed  Google Scholar 

  26. Birney Y, Redmond EM, Sitzmann JV, Cahill PA. Eicosanoids in cirrhosis and portal hypertension. Prostaglandins Other Lipid Mediat. 2003;72:3–18. https://doi.org/10.1016/S1098-8823(03)00080-7.

    Article  CAS  PubMed  Google Scholar 

  27. Bäck M, Powell WS, Dahlén SE, Drazen JM, Evans JF, Serhan CN, et al. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br J Pharmacol. 2014;171:3551–74. https://doi.org/10.1111/bph.12665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50:1827–38. https://doi.org/10.1002/hep.23229.

    Article  CAS  PubMed  Google Scholar 

  29. Graupera M, García-Pagán J, Titos E, Claria J, Massaguer A, Bosch J, et al. 5-lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: a possible role of cysteinyl-leukotrienes. Gastroenterology. 2002;122:387–93. https://doi.org/10.1053/gast.2002.31040.

    Article  CAS  PubMed  Google Scholar 

  30. Steib CJ, Bilzer M, Op den Winkel M, Pfeiler S, Hartmann AC, Hennenberg M, et al. Treatment with the leukotriene inhibitor montelukast for 10 days attenuates portal hypertension in rat liver cirrhosis. Hepatology. 2010;51:2086–96. https://doi.org/10.1002/hep.23596.

    Article  CAS  PubMed  Google Scholar 

  31. Martinez-Clemente M, Claria J, Titos E. The 5-lipoxygenase/leukotriene pathway in obesity, insulin resistance, and fatty liver disease. Curr Opin Clin Nutr Metab Care. 2011;14:347–53. https://doi.org/10.1097/Mco.0b013e32834777fa.

    Article  CAS  PubMed  Google Scholar 

  32. Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev. 2009;89:1269–339. https://doi.org/10.1152/physrev.00027.2008.

    Article  CAS  PubMed  Google Scholar 

  33. Feng H-Q, Weymouth ND, Rockey DC. Endothelin antagonism in portal hypertensive mice: implications for endothelin receptor-specific signaling in liver disease. AJP Gastrointest Liver Physiol. 2009;297:G27–33. https://doi.org/10.1152/ajpgi.90405.2008.

    Article  CAS  Google Scholar 

  34. Bataller R, Gines P, Nicolas JM, Gorbig MN, Garcia-Ramallo E, Gasull X, et al. Angiotensin induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–56.

    Article  CAS  PubMed  Google Scholar 

  35. Arroyo V, Bosch J, Mauri M, Ribera F, Navarro-López F, Rodés J. Effect of angiotensin-II blockade on systemic and hepatic hemodynamics and on the renin– angiotensin–aldosterone system in cirrhosis with ascites. Eur J Clin Investig. 1981;11:221–9.

    Article  CAS  Google Scholar 

  36. Souza-Mello V, Gregório BM, Cardoso-de-Lemos FS, de Carvalho L, Aguila MB, Mandarim-de-Lacerda CA. Comparative effects of telmisartan, sitagliptin and metformin alone or in combination on obesity, insulin resistance, and liver and pancreas remodelling in C57BL/6 mice fed on a very high-fat diet. Clin Sci. 2010;119:239–50. https://doi.org/10.1042/CS20100061.

    Article  CAS  Google Scholar 

  37. Lautt WW. Regulatory processes interacting to maintain hepatic blood flow constancy: Vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstriction. Hepatol Res. 2007;37:891–903. https://doi.org/10.1111/j.1872-034X.2007.00148.x.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Soresi M, Giannitrapani L, Noto D, Terranova A, Campagna ME, Cefalù AB, et al. Effects of steatosis on hepatic hemodynamics in patients with metabolic syndrome. Ultrasound Med Biol. 2015;41:1545–52. https://doi.org/10.1016/j.ultrasmedbio.2015.01.020.

    Article  PubMed  Google Scholar 

  39. Feldstein AE, Papouchado BG, Angulo P, Sanderson S, Adams L, Gores GJ. Hepatic stellate cells and fibrosis progression in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2005;3:384–9.

    Article  PubMed  Google Scholar 

  40. Bosch J, Abraldes JG, Fernández M, García-Pagán JC. Hepatic endothelial dysfunction and abnormal angiogenesis: new targets in the treatment of portal hypertension. J Hepatol. 2010;53:558–67. https://doi.org/10.1016/j.jhep.2010.03.021.

    Article  CAS  PubMed  Google Scholar 

  41. • Mc Connell M, Iwakiri Y. Biology of portal hypertension. Hepatol Int. 2018;12:11–23. https://doi.org/10.1007/s12072-017-9826-x Good overview of the pathophysiology of cirrhosis and potential biological (therapeutic) targets.

    Article  Google Scholar 

  42. Villa E, Cammà C, Marietta M, Luongo M, Critelli R, Colopi S, et al. Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterology. 2012;143:1253–1260.e4. https://doi.org/10.1053/j.gastro.2012.07.018.

    Article  CAS  PubMed  Google Scholar 

  43. Wanless IR, Shiota K. The pathogenesis of nonalcoholic steatohepatitis and other fatty liver diseases: a four-step model including the role of lipid release and hepatic venular obstruction in the progression to cirrhosis. Semin Liver Dis. 2004;24:99–106.

    Article  PubMed  Google Scholar 

  44. Verrijken A, Francque S, Mertens I, Prawitt J, Caron S, Hubens G, et al. Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2014;59:121–9. https://doi.org/10.1002/hep.26510.

    Article  CAS  PubMed  Google Scholar 

  45. Rincon D, Lo Iacono O, Ripoll C, Gomez-Camarero J, Salcedo M, Catalina MV, et al. Prognostic value of hepatic venous pressure gradient for in-hospital mortality of patients with severe acute alcoholic hepatitis. Aliment Pharmacol Ther. 2007;25:841–8. https://doi.org/10.1111/j.1365-2036.2007.03258.x.

    Article  CAS  PubMed  Google Scholar 

  46. Mookerjee RP, Sen S, Davies NA, Hodges SJ, Williams R, Jalan R. Tumour necrosis factor α is an important mediator of portal and systemic haemodynamic derangements in alcoholic hepatitis. Gut. 2003;52:1182–7. https://doi.org/10.1136/gut.52.8.1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Knittel T, Müller L, Saile B, Ramadori G. Effect of tumour necrosis factor-α on proliferation, activation and protein synthesis of rat hepatic stellate cells. J Hepatol. 1997;27:1067–80. https://doi.org/10.1016/S0168-8278(97)80151-1.

    Article  CAS  PubMed  Google Scholar 

  48. Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu Rev Physiol. 2016;78:181–205. https://doi.org/10.1146/annurev-physiol-021115-105331.

    Article  CAS  PubMed  Google Scholar 

  49. Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014;3:1–10. https://doi.org/10.1016/S2213-8587(14)70032-4.

    Article  CAS  Google Scholar 

  50. Francque S, Verrijken A, Mertens I, Hubens G, Van Marck E, Pelckmans P, et al. Visceral adiposity and insulin resistance are independent predictors of the presence of non-cirrhotic NAFLD-related portal hypertension. Int J Obes. 2011;35:270–8. https://doi.org/10.1038/ijo.2010.134.

    Article  CAS  Google Scholar 

  51. Mendes FD, Suzuki A, Sanderson SO, Lindor KD, Angulo P. Prevalence and indicators of portal hypertension in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2012;10:1–15. https://doi.org/10.1016/j.cgh.2012.05.008.

    Article  Google Scholar 

  52. Loomba R, Abraham M, Unalp A, Wilson L, Lavine J, Doo E, et al. Association between diabetes, family history of diabetes and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology. 2012;56:943–51. https://doi.org/10.1002/hep.25772.Association.

    Article  PubMed  Google Scholar 

  53. King RJ, Harrison L, Gilbey SG, Santhakumar A, Wyatt J, Jones R, et al. Case Report Diabetic hepatosclerosis: another diabetes microvascular complication? Diabet Med. 2016;33(2):e5–7. https://doi.org/10.1111/dme.12898.

  54. Picardi A, Avola DD, Galati G. Diabetes in chronic liver disease : from old concepts to new evidence. Diabetes Metab Res Rev. 2006;22:274–83. https://doi.org/10.1002/dmrr.636.

    Article  CAS  PubMed  Google Scholar 

  55. Berzigotti A, Garcia-tsao G, Bosch J, Grace ND, Burroughs AK, Morillas R, et al. Obesity is an independent risk factor for clinical decompensation in patients with cirrhosis. Hepatology. 2011;54:555–61. https://doi.org/10.1002/hep.24418.

    Article  PubMed  Google Scholar 

  56. Berzigotti A, Villanueva C, Genesc J, Ardevol A, August S, Calleja JL, et al. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the sport diet study. Hepatology. 2017;65:1293–305. https://doi.org/10.1002/hep.28992.

    Article  PubMed  Google Scholar 

  57. Baffy G. Origins of portal hypertension in nonalcoholic fatty liver disease. Dig Dis Sci. 2018;63:563–76. https://doi.org/10.1007/s10620-017-4903-5.

    Article  CAS  PubMed  Google Scholar 

  58. • Rodrigues SG, Montani M, Guixé-Muntet S, De Gottardi A, Berzigotti A, Bosch J. Patients with signs of advanced liver disease and clinically significant portal hypertension do not necessarily have cirrhosis. Clin Gastroenterol Hepatol. 2019. https://doi.org/10.1016/j.cgh.2018.12.038 Illustration that PHT in NAFLD is present before cirrhosis and indeed differs (partially) from other forms of cirrhosis.

  59. Seifalian AM, Chidambaram V, Rolles K, Davidson BR. In vivo demonstration of impaired microcirculation in steatotic human liver grafts. Liver Transpl Surg. 1998;4:71–7.

    Article  CAS  PubMed  Google Scholar 

  60. Selzner M, Clavien P. Fatty Liver in Liver Transplantation and Surgery. Semin Liver Dis. 2001;21:105–13.

    Article  CAS  PubMed  Google Scholar 

  61. Zamboni F, Franchello A, David E, Rocca G, Ricchiuti A, Lavezzo B, et al. Effect of macrovescicular steatosis and other donor and recipient characteristics on the outcome of liver transplantation. Clin Transpl. 2001;15:53–7. https://doi.org/10.1034/j.1399-0012.2001.150109.x.

    Article  CAS  Google Scholar 

  62. Cakmak E, Duksal F, Altinkaya E, Acibucu F, Dogan OT, Yonem O, et al. Association between the severity of nocturnal hypoxia in obstructive sleep apnea and non-alcoholic fatty liver damage. Hepat Mon. 2015;15:1–5. https://doi.org/10.5812/hepatmon.32655.

    Article  Google Scholar 

  63. Piguet A-C, Stroka D, Zimmermann A, Dufour J-F. Hypoxia aggravates non-alcoholic steatohepatitis in mice lacking hepatocellular PTEN. Clin Sci. 2010;118:401–10. https://doi.org/10.1042/CS20090313.

    Article  CAS  Google Scholar 

  64. Hernández-Guerra M, de Ganzo ZA, González-Méndez Y, Salido E, Abreu P, Moreno M, et al. Chronic intermittent hypoxia aggravates intrahepatic endothelial dysfunction in cirrhotic rats. Hepatology. 2013;57:1564–74. https://doi.org/10.1002/hep.26152.

    Article  CAS  PubMed  Google Scholar 

  65. Shpirer I, Copel L, Broide E, Elizur A. Continuous positive airway pressure improves sleep apnea associated fatty liver. Lung. 2010;188:301–7. https://doi.org/10.1007/s00408-009-9219-6.

    Article  PubMed  Google Scholar 

  66. Chalasani N, Wilson L, Kleiner DE, Cummings OW, Brunt EM, Ünalp A. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J Hepatol. 2008;48:829–34. https://doi.org/10.1016/j.jhep.2008.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Brunt EM, Tiniakos DG. Histopathology of nonalcoholic fatty liver disease. World J Gastroenterol. 2010;16:5286–96. https://doi.org/10.3748/wjg.v16.i42.5286.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Burt AD, Tiniakos DG, Lackner C. Diagnosis and assessment of NAFLD: definitions and histopathological classification. Semin Liver Dis. 2015;35:207–20.

    Article  PubMed  Google Scholar 

  69. Ebert EC. Hypoxic liver injury. Mayo Clin Proc. 2006;81:1232–6. https://doi.org/10.4065/81.9.1232.

    Article  PubMed  Google Scholar 

  70. Mantena SK, Vaughn DP, Andringa KK, Eccleston HB, King AL, Abrams GA, et al. High fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial function in vivo. Biochem J. 2009;417:183–93. https://doi.org/10.1042/BJ20080868.

    Article  PubMed  Google Scholar 

  71. Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med. 2004;36:1–12. https://doi.org/10.1038/emm.2004.1.

    Article  PubMed  Google Scholar 

  72. Asai Y, Yamada T, Tsukita S, Takahashi K, Maekawa M, Honma M, et al. Activation of the hypoxia inducible factor 1α subunit pathway in steatotic liver contributes to formation of cholesterol gallstones. Gastroenterology. 2017;152:1521–35. https://doi.org/10.1053/j.gastro.2017.01.001.

    Article  CAS  PubMed  Google Scholar 

  73. Kim WY, Safran M, Buckley MRM, Ebert BL, Glickman J, Bosenberg M, et al. Failure to prolyl hydroxylate hypoxia-inducible factor α phenocopies VHL inactivation in vivo. EMBO J. 2006;25:4650–62. https://doi.org/10.1038/sj.emboj.7601300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fisher CDC, Lickteig AJA, Augustine LML, Ranger-Moore J, Jackson JPJ, Ferguston S, et al. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos. 2009;37:2087–94. https://doi.org/10.1124/dmd.109.027466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li S, Fujino M, Takahara T, Li X-K. Protective role of heme oxygenase-1 in fatty liver ischemia-reperfusion injury. Med Mol Morphol. 2018. https://doi.org/10.1007/s00795-018-0205-z.

  76. Bril F, Lomonaco R, Orsak B, Ortiz-Lopez C, Webb A, Tio F, et al. Relationship between disease severity, hyperinsulinemia, and impaired insulin clearance in patients with nonalcoholic steatohepatitis. Hepatology. 2014;59:2178–87. https://doi.org/10.1002/hep.26988.

    Article  CAS  PubMed  Google Scholar 

  77. Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi ZM, et al. Increased risk of mortality by fibrosis stage in non-alcoholic fatty liver disease: systematic review and meta-analysis. Hepatology. 2017;65:1557–65. https://doi.org/10.1002/hep.29085.Increased.

    Article  CAS  PubMed  Google Scholar 

  78. Mesarwi OA, Shin M-K, Bevans-Fonti S, Schlesinger C, Shaw J, Polotsky VY. Hepatocyte hypoxia inducible factor-1 mediates the development of liver fibrosis in a mouse model of nonalcoholic fatty liver disease. PLoS One. 2016;11:1–15. https://doi.org/10.1371/journal.pone.0168572.

    Article  CAS  Google Scholar 

  79. Qu A, Taylor M, Xue X, Matsubara T, Metzger D, Chambon P, et al. Hypoxia-inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology. 2011;54:472–83. https://doi.org/10.1002/hep.24400.

    Article  CAS  PubMed  Google Scholar 

  80. Moon J-O, Welch TP, Gonzalez FJ, Copple BL. Reduced liver fibrosis in hypoxia-inducible factor-1alpha-deficient mice. Am J Physiol Gastrointest Liver Physiol. 2009;296:G582–92. https://doi.org/10.1152/ajpgi.90368.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Copple BL, Bai S, Burgoon LD, Moon JO. Hypoxia-inducible factor-1α regulates the expression of genes in hypoxic hepatic stellate cells important for collagen deposition and angiogenesis. Liver Int. 2010;31:230–44. https://doi.org/10.1111/j.1478-3231.2010.02347.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Caldwell SH, Oelsner DH, Iezzoni JC, Hespenheide EE, Battle EH, Driscoll CJ. Cryptogenic cirrhosis: clinical characterization and risk factors for underlying disease. Hepatology. 1999;29:664–9. https://doi.org/10.1002/hep.510290347.

    Article  CAS  PubMed  Google Scholar 

  83. Younossi Z, Stepanova M, Sanyal AJ, Afdhal NH, Goodman Z, Younossi Z, et al. The conundrum of cryptogenic cirrhosis: adverse outcomes without treatment options. The conundrum of cryptogenic cirrhosis: adverse outcomes without treatment options. J Hepatol. 2018;69:1365–70. https://doi.org/10.1016/j.jhep.2018.08.013.

    Article  PubMed  Google Scholar 

  84. Abraldes JG, Rodríguez-Vilarrupla A, Graupera M, Zafra C, García-Calderó H, García-Pagán JC, et al. Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl4 cirrhotic rats. J Hepatol. 2007;46:1040–6. https://doi.org/10.1016/j.jhep.2007.01.020.

    Article  CAS  PubMed  Google Scholar 

  85. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35:478–91. https://doi.org/10.1053/jhep.2002.31432.

    Article  CAS  PubMed  Google Scholar 

  86. Biecker E, Trebicka J, Kang A, Hennenberg M, Sauerbruch T, Heller J. Treatment of bile duct-ligated rats with the nitric oxide synthase transcription enhancer AVE 9488 ameliorates portal hypertension. Liver Int. 2008:331–8. https://doi.org/10.1111/j.1478-3231.2008.01664.x.

  87. Fiorucci S, Antonelli E, Brancaleone V, Sanpaolo L, Orlandi S, Distrutti E, et al. NCX-1000, a nitric oxide-releasing derivative of ursodeoxycholic acid, ameliorates portal hypertension and lowers norepinephrine-induced intrahepatic resistance in the isolated and perfused rat liver. 2003;39:932–9. https://doi.org/10.1016/S0168-8278(03)00393-3.

  88. Maslak E, Zabielski P, Kochan K, Kus K, Jasztal A, Sitek B, et al. The liver-selective NO donor, V-PYRRO/NO, protects against liver steatosis and improves postprandial glucose tolerance in mice fed high fat diet. Biochem Pharmacol. 2015;93:389–400. https://doi.org/10.1016/j.bcp.2014.12.004.

    Article  CAS  PubMed  Google Scholar 

  89. Hyogo H, Tazuma S, Arihiro K, Iwamoto K, Nabeshima Y, Inoue M, et al. Efficacy of atorvastatin for the treatment of nonalcoholic steatohepatitis with dyslipidemia. Metabolism. 2008;57:1711–8. https://doi.org/10.1016/j.metabol.2008.07.030.

    Article  CAS  PubMed  Google Scholar 

  90. Dongiovanni P, Petta S, Mannisto V, Mancina RM, Pipitone R, Karja V, et al. Statin use and non-alcoholic steatohepatitis in at risk individuals. J Hepatol. 2015;63:705–12. https://doi.org/10.1016/j.jhep.2015.05.006.

    Article  CAS  PubMed  Google Scholar 

  91. Kargiotis K, Athyros VG, Giouleme O, Katsiki N, Katsiki E, Anagnostis P, et al. Resolution of non-alcoholic steatohepatitis by rosuvastatin monotherapy in patients with metabolic syndrome. World J Gastroenterol. 2015;21:7860–8. https://doi.org/10.3748/wjg.v21.i25.7860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gracia-Sancho J, García-Calderó H, Hide D, Marrone G, Guixé-Muntet S, Peralta C, et al. Simvastatin maintains function and viability of steatotic rat livers procured for transplantation. J Hepatol. 2013;58:1140–6. https://doi.org/10.1016/j.jhep.2013.02.005.

    Article  CAS  PubMed  Google Scholar 

  93. Abraldes JG, Albillos A, Bañares R, Turnes J, González R, García-Pagán JC, et al. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology. 2009;136:1651–8. https://doi.org/10.1053/j.gastro.2009.01.043.

    Article  CAS  PubMed  Google Scholar 

  94. Chang C-C, Wang S-S, Hsieh H-G, Lee W-S, Chuang C-L, Lin H-C, et al. Rosuvastatin improves hepatopulmonary syndrome through inhibition of inflammatory angiogenesis of lung. Clin Sci (Lond). 2015;129:449–60. https://doi.org/10.1042/CS20140622.

    Article  CAS  Google Scholar 

  95. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–65. https://doi.org/10.1016/S0140-6736(14)61933-4.

    Article  CAS  PubMed  Google Scholar 

  96. Verbeke L, Farre R, Trebicka J, Komuta M, Roskams T, Klein S, et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology. 2014;59:2286–98. https://doi.org/10.1002/hep.26939.

    Article  CAS  PubMed  Google Scholar 

  97. Schwabl P, Hambruch E, Seeland BA, Hayden H, Wagner M, Garnys L, et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J Hepatol. 2017;66:724–33. https://doi.org/10.1016/j.jhep.2016.12.005.

    Article  CAS  PubMed  Google Scholar 

  98. Kanda T, Brown JD, Orasanu G, Vogel S, Gonzalez FJ, Sartoretto J, et al. PPARγ in the endothelium regulates metabolic responses to high-fat diet in mice. J Clin Invest. 2009;119:110–24. https://doi.org/10.1172/JCI36233.

    Article  CAS  PubMed  Google Scholar 

  99. Zambon A, Gervois P, Pauletto P, Fruchart JC, Staels B. Modulation of hepatic inflammatory risk markers of cardiovascular diseases by PPAR-α activators: Clinical and experimental evidence. Arterioscler Thromb Vasc Biol. 2006;26:977–86. https://doi.org/10.1161/01.ATV.0000204327.96431.9a.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven M. Francque.

Ethics declarations

Conflict of Interest

Denise van der Graaff and Wilhelmus Kwanten each declare no potential conflicts of interest.

Sven Francque received funding from the Fund for Scientific Research (FWO) Flanders (1802154N). The funder had no role in preparation of the manuscript.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Portal Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francque, S.M., Kwanten, W.J. & van der Graaff, D. Portal Hypertension in NASH: Is It Different from Other Aetiologies?. Curr Hepatology Rep 18, 134–143 (2019). https://doi.org/10.1007/s11901-019-00459-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-019-00459-z

Keywords

Navigation