Skip to main content

Advertisement

Log in

Current State of Immunotherapy for HCC—Supporting Data and Toxicity Management

  • Hepatic Cancer (A Singal and A Mufti, Section Editors)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

After having tyrosine kinase inhibitor as only available one drug class to treat advanced hepatocellular carcinoma (HCC) for more than a decade, immunotherapy agents are now approved for second-line therapy and are currently being compared head-to-head with sorafenib for first-line treatment. It is becoming increasingly important for hepatologists to become aware of agents in development, potential adverse events, and suggested treatment monitoring.

Recent Findings

Nivolumab and pembrolizumab have both shown promising phase II data in the second-line setting for HCC and phase III data in both the first-line and second-line settings are anticipated soon. Durable responses of 15–20% is seen as a potential breakthrough and may translate into improved survival for patients with advanced HCC. While immunotherapies are well tolerated overall, rare but serious immune-mediated adverse events are possible and warrant monitoring to facilitate early treatment when needed. There is ongoing research of combinations with immunotherapy agents and other systemic agents and/or locoregional therapies to further enhance response rates.

Summary

Ongoing studies will define the role of immunotherapy for treatment of HCC, both as single agents as well as in combination with other therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121(1):1–14.

    Article  CAS  Google Scholar 

  2. Jessy T. Immunity over inability: the spontaneous regression of cancer. J Nat Sci Biol Med. 2011;2(1):43–9.

    Article  Google Scholar 

  3. Amin A, White RL Jr. High-dose interleukin-2: is it still indicated for melanoma and RCC in an era of targeted therapies? Oncology (Williston Park). 2013;27(7):680–91.

    Google Scholar 

  4. • Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5 A thourough review of checkpoint blockade in cancer.

    Article  CAS  Google Scholar 

  5. Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565–94.

    Article  CAS  Google Scholar 

  6. Peggs KS, Quezada SA, Korman AJ, Allison JP. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol. 2006;18(2):206–13.

    Article  CAS  Google Scholar 

  7. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  Google Scholar 

  8. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  Google Scholar 

  9. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  Google Scholar 

  10. • Llovet JM, et al. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018; A comprehensice review of molecular therapy in HCC.

  11. Ringelhan M, Pfister D, O’Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19(3):222–32.

    Article  CAS  Google Scholar 

  12. Hernandez-Gea V, et al. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144(3):512–27.

    Article  Google Scholar 

  13. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  CAS  Google Scholar 

  14. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.

    Article  CAS  Google Scholar 

  15. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–73.

    Article  CAS  Google Scholar 

  16. Finn RS. Review of regorafenib for the treatment of hepatocellular carcinoma. Gastroenterol Hepatol (N Y). 2017;13(8):492–5.

    Google Scholar 

  17. Finn RS, Merle P, Granito A, Huang YH, Bodoky G, Pracht M, et al. Outcomes of sequential treatment with sorafenib followed by regorafenib for HCC: additional analyses from the phase III RESORCE trial. J Hepatol. 2018;69(2):353–8.

    Article  CAS  Google Scholar 

  18. Abou-Alfa GK, Meyer T, Cheng AL, el-Khoueiry AB, Rimassa L, Ryoo BY, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63.

    Article  CAS  Google Scholar 

  19. Zhu AX, Kang YK, Yen C-J, Finn RS, Galle PR, Llovet JM. REACH-2: A randomized, double-blind, placebo-controlled phase 3 study of ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma (HCC) and elevated baseline alpha-fetoprotein (AFP) following first-line sorafenib. J Clin Oncol. 2018;36(suppl):abstract 4003.

    Article  Google Scholar 

  20. Lencioni R, Montal R, Torres F, Park JW, Decaens T, Raoul JL, et al. Objective response by mRECIST as a predictor and potential surrogate end-point of overall survival in advanced HCC. J Hepatol. 2017;66(6):1166–72.

    Article  Google Scholar 

  21. Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2015;12(12):681–700.

    Article  CAS  Google Scholar 

  22. Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10(2):99–111.

    Article  CAS  Google Scholar 

  23. Inarrairaegui M, Melero I, Sangro B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin Cancer Res. 2018;24(7):1518–24.

    Article  CAS  Google Scholar 

  24. Kambhampati S, et al. Nivolumab in advanced hepatocellular carcinoma (HCC) and Child Pugh B (CPB) cirrhosis: Safety and clinical outcomes in a retrospective case series. J Clinical Oncol. 2018;36(4_suppl):496–6.

  25. Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.

    Article  CAS  Google Scholar 

  26. •• El-Khoueiry AB, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502 Phase 2 data of PD-1 blockade in HCC that supported accelerated approval of nivolumab in HCC.

    Article  CAS  Google Scholar 

  27. FDA grants accelerated approval to nivolumab for HCC previously treated with sorafenib. 2017; Available from: https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm577166.htm.

  28. FDA. Highlights of Prescribing Information for Opdivo. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125554s041lbl.pdf. 2014 [cited 2018 24 Sep].

  29. • Brahmer JR, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018;36(17):1714–68 ASCO Guideline on Managing Immune Checkpoint Toxicities.

    Article  CAS  Google Scholar 

  30. Reynolds K, Thomas M, Dougan M. Diagnosis and Management of Hepatitis in patients on checkpoint blockade. Oncologist. 2018;23(9):991–7.

    Article  Google Scholar 

  31. Zen Y, Yeh MM. Hepatotoxicity of immune checkpoint inhibitors: a histology study of seven cases in comparison with autoimmune hepatitis and idiosyncratic drug-induced liver injury. Mod Pathol. 2018;31(6):965–73.

    Article  Google Scholar 

  32. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–52.

    Article  Google Scholar 

  33. Wainberg ZA, Segal NH, Jaeger D, Lee K-H, Marshall J, Antonia J, et al. Safety and clinical activity of durvalumab monotherapy in patients with hepatocellular carcinoma (HCC). J Clin Oncol. 2017;35(supl):Abstract 4071.

    Article  Google Scholar 

  34. Kelley RK, et al. Phase I/II study of durvalumab and tremelimumab in patients with unresectable hepatocellular carcinoma (HCC): Phase I safety and efficacy analyses. J Clin Oncol. 2017;35(15_suppl):4073–3.

  35. Hansler J, Wissniowski TT, Schuppan D, Witte A, Bernatik T, Hahn EG, et al. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World J Gastroenterol. 2006;12(23):3716–21.

    Article  Google Scholar 

  36. Mizukoshi E, Yamashita T, Arai K, Sunagozaka H, Ueda T, Arihara F, et al. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology. 2013;57(4):1448–57.

    Article  CAS  Google Scholar 

  37. Duffy AG, Greten TF. Immunological off-target effects of standard treatments in gastrointestinal cancers. Ann Oncol. 2014;25(1):24–32.

    Article  CAS  Google Scholar 

  38. Kalathil SG, et al. PD-1(+) and Foxp3(+) T cell reduction correlates with survival of HCC patients after sorafenib therapy. JCI Insight. 2016;1(11).

  39. Choueiri TK, Larkin J, Oya M, Thistlethwaite F, Martignoni M, Nathan P, et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol. 2018;19(4):451–60.

    Article  CAS  Google Scholar 

  40. Stein S, et al. Safety and clinical activity of 1L atezolizumab + bevacizumab in a phase Ib study in hepatocellular carcinoma (HCC). J Clin Oncol. 2018;36(15_suppl):4074–4.

  41. Finn RS, et al. IMbrave150: A randomized phase III study of 1L atezolizumab plus bevacizumab vs sorafenib in locally advanced or metastatic hepatocellular carcinoma. J Clin Oncol. 2018;36(15_suppl):TPS4141–1.

  42. Ikeda M, et al. A phase 1b trial of lenvatinib (LEN) plus pembrolizumab (PEM) in patients (pts) with unresectable hepatocellular carcinoma (uHCC). J Clin Oncol. 2018;36(15_suppl):4076–6.

  43. Chiou VL, Burotto M. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol. 2015;33(31):3541–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Finn.

Ethics declarations

Conflict of Interest

Richard S. Finn reports personal fees from Astra Zeneca, Bayer, Bristol Myers Squibb, Eisai, Eli Lilly, Pfizer, Novartis, Merck, Roche/Genentech, during the conduct of the study. Anthony Bejjani declares no potential conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Hepatic Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejjani, A., Finn, R.S. Current State of Immunotherapy for HCC—Supporting Data and Toxicity Management. Curr Hepatology Rep 17, 434–443 (2018). https://doi.org/10.1007/s11901-018-0442-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-018-0442-6

Keywords

Navigation