Skip to main content

Advertisement

Log in

Hematopoietic Cell Transplantation and Adoptive Cell Therapy in Peripheral T Cell Lymphoma

  • Stem Cell Transplantation (R Maziarz, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Peripheral T cell lymphomas (PTCLs) are a heterogeneous group of diseases and represent approximately 10–15% of all non-Hodgkin lymphomas. Multiagent chemotherapy with a CHOP (cyclophosphamide, adriamycin, vincristine, prednisone)-like regimen is the current standard of care in the frontline setting, but outcomes for PTCL patients generally remain poor. Strategies used to improve survival and reduce the risk of relapse in PTCL patients include autologous hematopoietic cell transplant (autoHCT) and allogeneic HCT (alloHCT). Due to the relative rarity of these diseases, the evidence supporting the use of autoHCT and alloHCT is based on retrospective and single-arm prospective studies. Novel targeted therapies are now being incorporated into the treatment of PTCL, and they may play important roles in improving upon current standards of care. Herein, we summarize the evidence supporting HCT for the treatment of the most common PTCL histologic subtypes and highlight novel treatment strategies aimed at improving outcomes for these patients, including cutting-edge approaches using chimeric antigen receptor T cells (CAR-T).

Recent Findings

Given recent improvements in OS and PFS in CD30+ PTCL using the drug-antibody conjugate brentuximab vedotin (BV), new questions arise regarding the impact of BV on consolidative autoHCT, and its role as a maintenance therapy. Multiple histone deacetylase inhibitors (HDACis) have been approved for the treatment of relapsed/refractory PTCL, and these agents are being incorporated into HCT approaches, both in the frontline and maintenance settings. Early data incorporating these agents into novel conditioning regimens have been reported, and emerging evidence from recent trials suggests that CART cell therapies may prove effective in relapsed/refractory PTCL.

Summary

The recommended treatment strategy in non-ALK+ PTCL remains induction with a CHOP-like regimen followed by consolidative autoHCT in first remission. In the relapsed/refractory setting, salvage chemotherapy followed by HCT (autoHCT or alloHCT depending on histologic subtype and HCT history) offers the only potential for cure or long-term remission. Ample room for improvement remains in the treatment of patients with PTCL, and novel treatment strategies incorporating targeted agents and CAR-T therapy may help to address the unmet needs of this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. • Vose J, et al. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30. This study is an important study to understand the long-term prognosis of patients with PTCL as it is the largest cohort of PTCL patients published to date.

    PubMed  Google Scholar 

  3. Broccoli A, Zinzani PL. Peripheral T-cell lymphoma, not otherwise specified. Blood. 2017;129(9):1103–12.

    CAS  PubMed  Google Scholar 

  4. Lunning MA, Vose JM. Angioimmunoblastic T-cell lymphoma: the many-faced lymphoma. Blood. 2017;129(9):1095–102.

    CAS  PubMed  Google Scholar 

  5. Girardi T, Vicente C, Cools J, de Keersmaecker K. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gisselbrecht C, Gaulard P, Lepage E, Coiffier B, Brière J, Haioun C, et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin’s lymphomas. Groupe d’Etudes des Lymphomes de l’Adulte (GELA). Blood. 1998;92(1):76–82.

    CAS  PubMed  Google Scholar 

  7. Schmitz N, Trümper L, Ziepert M, Nickelsen M, Ho AD, Metzner B, et al. Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood. 2010;116(18):3418–25.

    CAS  PubMed  Google Scholar 

  8. Horwitz S, O'Connor OA, Pro B, Illidge T, Fanale M, Advani R, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet. 2019;393(10168):229–40.

    CAS  PubMed  Google Scholar 

  9. Horwitz SM, Ansell SM, Ai WZ, Barnes J, Barta SK, Choi M, et al. NCCN guidelines insights: T-cell lymphomas, version 2.2018. J Natl Compr Cancer Netw. 2018;16(2):123–35.

    Google Scholar 

  10. Kharfan-Dabaja MA, Kumar A, Ayala E, Hamadani M, Reimer P, Gisselbrecht C, et al. Clinical practice recommendations on indication and timing of hematopoietic cell transplantation in mature T cell and NK/T cell lymphomas: an international collaborative effort on behalf of the guidelines Committee of the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2017;23(11):1826–38.

    PubMed  Google Scholar 

  11. d’Amore F, Gaulard P, Trümper L, Corradini P, Kim WS, Specht L, et al. Peripheral T-cell lymphomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v108–15.

    PubMed  Google Scholar 

  12. Fossard G, Broussais F, Coelho I, Bailly S, Nicolas-Virelizier E, Toussaint E, et al. Role of up-front autologous stem-cell transplantation in peripheral T-cell lymphoma for patients in response after induction: an analysis of patients from LYSA centers. Ann Oncol. 2018;29(3):715–23.

    CAS  PubMed  Google Scholar 

  13. Cederleuf H, Hjort Jakobsen L, Ellin F, de Nully Brown P, Stauffer Larsen T, Bøgsted M, et al. Outcome of peripheral T-cell lymphoma in first complete remission: a Danish-Swedish population-based study. Leuk Lymphoma. 2017;58(12):2815–23.

    PubMed  Google Scholar 

  14. Yam C, Landsburg DJ, Nead KT, Lin X, Mato AR, Svoboda J, et al. Autologous stem cell transplantation in first complete remission may not extend progression-free survival in patients with peripheral T cell lymphomas. Am J Hematol. 2016;91(7):672–6.

    CAS  PubMed  Google Scholar 

  15. Ellin F, Landström J, Jerkeman M, Relander T. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish Lymphoma Registry. Blood. 2014;124(10):1570–7.

    CAS  PubMed  Google Scholar 

  16. Abramson JS, Feldman T, Kroll-Desrosiers AR, Muffly LS, Winer E, Flowers CR, et al. Peripheral T-cell lymphomas in a large US multicenter cohort: prognostication in the modern era including impact of frontline therapy. Ann Oncol. 2014;25(11):2211–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gui L, Shi YK, He XH, Lei YH, Zhang HZ, Han XH, et al. High-dose therapy and autologous stem cell transplantation in peripheral T-cell lymphoma: treatment outcome and prognostic factor analysis. Int J Hematol. 2014;99(1):69–78.

    CAS  PubMed  Google Scholar 

  18. Ahn JS, Yang DH, Jung SH, Chae YS, Sohn SK, Yhim HY, et al. Autologous stem cell transplantation with busulfan, cyclophosphamide, and etoposide as an intensifying frontline treatment in patients with peripheral T cell lymphomas: a multicenter retrospective trial. Ann Hematol. 2013;92(6):789–97.

    CAS  PubMed  Google Scholar 

  19. Mehta N, Maragulia JC, Moskowitz A, Hamlin PA, Lunning MA, Moskowitz CH, et al. A retrospective analysis of peripheral T-cell lymphoma treated with the intention to transplant in the first remission. Clin Lymphoma Myeloma Leuk. 2013;13(6):664–70.

    PubMed  Google Scholar 

  20. Numata A, et al. Long-term outcomes of autologous PBSCT for peripheral T-cell lymphoma: retrospective analysis of the experience of the Fukuoka BMT group. Bone Marrow Transplant. 2010;45(2):311–6.

    CAS  PubMed  Google Scholar 

  21. Rodríguez J, Conde E, Gutiérrez A, Arranz R, León Á, Marín J, et al. The results of consolidation with autologous stem-cell transplantation in patients with peripheral T-cell lymphoma (PTCL) in first complete remission: the Spanish Lymphoma and Autologous Transplantation Group experience. Ann Oncol. 2007;18(4):652–7.

    PubMed  Google Scholar 

  22. Feyler S, et al. The role of high-dose therapy and stem cell rescue in the management of T-cell malignant lymphomas: a BSBMT and ABMTRR study. Bone Marrow Transplant. 2007;40(5):443–50.

    CAS  PubMed  Google Scholar 

  23. Mounier N, Gisselbrecht C, Brière J, Haioun C, Feugier P, Offner F, et al. All aggressive lymphoma subtypes do not share similar outcome after front-line autotransplantation: a matched-control analysis by the Groupe d’Etude des Lymphomes de l’Adulte (GELA). Ann Oncol. 2004;15(12):1790–7.

    CAS  PubMed  Google Scholar 

  24. • Smith SM, et al. Hematopoietic cell transplantation for systemic mature T-cell non-Hodgkin lymphoma. J Clin Oncol. 2013;31(25):3100–9. Retrospective analysis of CIBMTR data regarding outcomes with autoHCT and alloHCT for the treatment of PTCL. This represents the largest retrospective study of alloHCT to date and highlights the potential benefits (PFS) and risks (NRM) of this treatment modality.

    PubMed  PubMed Central  Google Scholar 

  25. Beitinjaneh A, Saliba RM, Medeiros LJ, Turturro F, Rondon G, Korbling M, et al. Comparison of survival in patients with T cell lymphoma after autologous and allogeneic stem cell transplantation as a frontline strategy or in relapsed disease. Biol Blood Marrow Transplant. 2015;21(5):855–9.

    PubMed  PubMed Central  Google Scholar 

  26. Corradini P, Tarella C, Zallio F, Dodero A, Zanni M, Valagussa P, et al. Long-term follow-up of patients with peripheral T-cell lymphomas treated up-front with high-dose chemotherapy followed by autologous stem cell transplantation. Leukemia. 2006;20(9):1533–8.

    CAS  PubMed  Google Scholar 

  27. Rodríguez J, Conde E, Gutiérrez A, Arranz R, León Á, Marín J, et al. Frontline autologous stem cell transplantation in high-risk peripheral T-cell lymphoma: a prospective study from the Gel-Tamo Study Group. Eur J Haematol. 2007;79(1):32–8.

    PubMed  Google Scholar 

  28. Mercadal S, Briones J, Xicoy B, Pedro C, Escoda L, Estany C, et al. Intensive chemotherapy (high-dose CHOP/ESHAP regimen) followed by autologous stem-cell transplantation in previously untreated patients with peripheral T-cell lymphoma. Ann Oncol. 2008;19(5):958–63.

    CAS  PubMed  Google Scholar 

  29. Reimer P, Rüdiger T, Geissinger E, Weissinger F, Nerl C, Schmitz N, et al. Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: results of a prospective multicenter study. J Clin Oncol. 2009;27(1):106–13.

    CAS  PubMed  Google Scholar 

  30. Wilhelm M, Smetak M, Reimer P, Geissinger E, Ruediger T, Metzner B, et al. First-line therapy of peripheral T-cell lymphoma: extension and long-term follow-up of a study investigating the role of autologous stem cell transplantation. Blood Cancer J. 2016;6(7):e452.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. •• d’Amore F, et al. Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01. J Clin Oncol. 2012;30(25):3093–9. This represents the largest prospective study of autoHCT as frontline consolidation therapy for PTCL to date and forms the basis for much of the current recommendations for frontline autograft in PTCL.

    PubMed  Google Scholar 

  32. Corradini P, et al. Intensified chemo-immunotherapy with or without stem cell transplantation in newly diagnosed patients with peripheral T-cell lymphoma. Leukemia. 2014;28(9):1885–91.

    CAS  PubMed  Google Scholar 

  33. Schmitz N, et al. First-line therapy of T-cell lymphoma: allogeneic or autologous transplantation for consolidation--final results of the AATT study. J Clin Oncol. 2019;37(15):7503.

    Google Scholar 

  34. Zhang JY, Briski R, Devata S, Kaminski MS, Phillips TJ, Mayer TL, et al. Survival following salvage therapy for primary refractory peripheral T-cell lymphomas (PTCL). Am J Hematol. 2018;93(3):394–400.

    CAS  PubMed  Google Scholar 

  35. Nieto Y, Valdez BC, Thall PF, Jones RB, Wei W, Myers A, et al. Double epigenetic modulation of high-dose chemotherapy with azacitidine and vorinostat for patients with refractory or poor-risk relapsed lymphoma. Cancer. 2016;122(17):2680–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Khan N, et al. A phase II, multicenter study of high dose chemotherapy with autologous stem cell transplant followed by maintenance therapy with romidepsin for T-cell lymphoma. Blood. 2019;134:4033.

  37. Gauthier J, Holmberg L, Wu D, Bensinger W, Gopal AK, Press O, et al. Minimal detectable disease confirmed by flow cytometry and poor outcome after autologous stem cell transplantation in peripheral T-cell lymphomas. Bone Marrow Transplant. 2016;51(12):1617–9.

    CAS  PubMed  Google Scholar 

  38. Damm-Welk C, Mussolin L, Zimmermann M, Pillon M, Klapper W, Oschlies I, et al. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2014;123(3):334–7.

    CAS  PubMed  Google Scholar 

  39. • Savage KJ, et al. An exploratory analysis of brentuximab vedotin plus CHP (A+CHP) in the frontline treatment of patients with CD30+ peripheral T-cell lymphomas (ECHELON-2): impact of consolidative stem cell transplant. Blood. 2019;134:464. Exploratory analysis of data from the ECHELON-2 trial suggesting benefit from consolidative autoHCT for patients in CR1 who were treated with a BV-containing regimen. This represents the first study using a BV-based induction followed by autoHCT consolidation.

    Google Scholar 

  40. Herrera AF, Zain J, Savage KJ, Feldman TA, Brammer JE, Chen L, et al. Preliminary results from a phase 2 trial of brentuximab vedotin plus cyclophosphamide, doxorubicin, etoposide, and prednisone (CHEP-BV) followed by BV consolidation in patients with CD30-positive peripheral T-cell lymphomas. Blood. 2019;134:4023.

    Google Scholar 

  41. Chen AI, McMillan A, Negrin RS, Horning SJ, Laport GG. Long-term results of autologous hematopoietic cell transplantation for peripheral T cell lymphoma: the Stanford experience. Biol Blood Marrow Transplant. 2008;14(7):741–7.

    PubMed  PubMed Central  Google Scholar 

  42. Rodríguez J, Caballero MD, Gutiérrez A, Marín J, Lahuerta JJ, Sureda A, et al. High-dose chemotherapy and autologous stem cell transplantation in peripheral T-cell lymphoma: the GEL-TAMO experience. Ann Oncol. 2003;14(12):1768–75.

    PubMed  Google Scholar 

  43. Kewalramani T, Zelenetz AD, Teruya-Feldstein J, Hamlin P, Yahalom J, Horwitz S, et al. Autologous transplantation for relapsed or primary refractory peripheral T-cell lymphoma. Br J Haematol. 2006;134(2):202–7.

    PubMed  Google Scholar 

  44. Wulf G, Hasenkamp J, Jung W, Wilhelm C, Held G, Nickelsen M, et al. Allogeneic stem cell transplantation for patients with relapsed or refractory T-cell lymphoma: efficacy of lymphoma-directed conditioning against advanced disease. Bone Marrow Transplant. 2019;54(6):877–84.

    CAS  PubMed  Google Scholar 

  45. Czajczynska A, Günther A, Repp R, Humpe A, Schub N, Raff T, et al. Allogeneic stem cell transplantation with BEAM and alemtuzumab conditioning immediately after remission induction has curative potential in advanced T-cell non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant. 2013;19(11):1632–7.

    CAS  PubMed  Google Scholar 

  46. Delioukina M, Zain J, Palmer JM, Tsai N, Thomas S, Forman S. Reduced-intensity allogeneic hematopoietic cell transplantation using fludarabine-melphalan conditioning for treatment of mature T-cell lymphomas. Bone Marrow Transplant. 2012;47(1):65–72.

    CAS  PubMed  Google Scholar 

  47. Dodero A, Spina F, Narni F, Patriarca F, Cavattoni I, Benedetti F, et al. Allogeneic transplantation following a reduced-intensity conditioning regimen in relapsed/refractory peripheral T-cell lymphomas: long-term remissions and response to donor lymphocyte infusions support the role of a graft-versus-lymphoma effect. Leukemia. 2012;26(3):520–6.

    CAS  PubMed  Google Scholar 

  48. Jacobsen ED, Kim HT, Ho VT, Cutler CS, Koreth J, Fisher DC, et al. A large single-center experience with allogeneic stem-cell transplantation for peripheral T-cell non-Hodgkin lymphoma and advanced mycosis fungoides/Sezary syndrome. Ann Oncol. 2011;22(7):1608–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zain J, Palmer JM, Delioukina M, Thomas S, Tsai NC, Nademanee A, et al. Allogeneic hematopoietic cell transplant for peripheral T-cell non-Hodgkin lymphoma results in long-term disease control. Leuk Lymphoma. 2011;52(8):1463–73.

    PubMed  PubMed Central  Google Scholar 

  50. Shustov AR, Gooley TA, Sandmaier BM, Shizuru J, Sorror ML, Sahebi F, et al. Allogeneic haematopoietic cell transplantation after nonmyeloablative conditioning in patients with T-cell and natural killer-cell lymphomas. Br J Haematol. 2010;150(2):170–8.

    PubMed  PubMed Central  Google Scholar 

  51. Kyriakou C, Canals C, Finke J, Kobbe G, Harousseau JL, Kolb HJ, et al. Allogeneic stem cell transplantation is able to induce long-term remissions in angioimmunoblastic T-cell lymphoma: a retrospective study from the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol. 2009;27(24):3951–8.

    PubMed  Google Scholar 

  52. Le Gouill S, et al. Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Société Francaise de Greffe de Moëlle et de Thérapie Cellulaire. J Clin Oncol. 2008;26(14):2264–71.

    PubMed  Google Scholar 

  53. Hosing C, et al. Romidepsin (Rom) in combination with fludarabine (Flu) and busulfan (Bu) conditioning followed by Rom maintenance in patients with T-cell malignancies receiving allogeneic stem cell transplant (allo-SCT): early results of a phase I/II trial. T-Cell Lymphoma forum. La Jolla, CA. 2020. Abstract 40.

  54. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk J, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56.

    CAS  PubMed  Google Scholar 

  56. Leisegang M, Wilde S, Spranger S, Milosevic S, Frankenberger B, Uckert W, et al. MHC-restricted fratricide of human lymphocytes expressing survivin-specific transgenic T cell receptors. J Clin Invest. 2010;120(11):3869–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med. 2018;24(10):1499–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol. 1998;10(6):457–70.

    CAS  PubMed  Google Scholar 

  59. Grover NS, Savoldo B. Challenges of driving CD30-directed CAR-T cells to the clinic. BMC Cancer. 2019;19(1):203.

    PubMed  PubMed Central  Google Scholar 

  60. Ramos CA, Ballard B, Zhang H, Dakhova O, Gee AP, Mei Z, et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Invest. 2017;127(9):3462–71.

    PubMed  PubMed Central  Google Scholar 

  61. Wang CM, Wu ZQ, Wang Y, Guo YL, Dai HR, Wang XH, et al. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res. 2017;23(5):1156–66.

    CAS  PubMed  Google Scholar 

  62. Ramos CA, Bilgi M, Gerken C, Dakhova O, Mei Z, Wu MF, et al. CD30-chimeric antigen receptor (CAR) T cells for therapy of Hodgkin lymphoma (HL). Biol Blood Marrow Transplant. 2019;25(3):S63.

    Google Scholar 

  63. Grover NS, Park SI, Ivanova A, Eldridge P, McKay K, Cheng CJA, et al. Clinical responses to CAR.CD30-T cells in patients with CD30+ lymphomas relapsed after multiple treatments including brentuximab vedotin. Blood. 2018;132:681.

    Google Scholar 

  64. Beaven A. CD30 CART in PTCL. Oral presentation. T-Cell Lymphoma Forum. La Jolla, CA. 2020.

  65. Brossard C, Semichon M, Trautmann A, Bismuth G. CD5 inhibits signaling at the immunological synapse without impairing its formation. J Immunol. 2003;170(9):4623–9.

    CAS  PubMed  Google Scholar 

  66. Engleman EG, Warnke R, Fox RI, Dilley J, Benike CJ, Levy R. Studies of a human T lymphocyte antigen recognized by a monoclonal antibody. Proc Natl Acad Sci. 1981;78(3):1791–5.

    CAS  PubMed  Google Scholar 

  67. Jones NH, Clabby ML, Dialynas DP, Huang HJS, Herzenberg LA, Strominger JL. Isolation of complementary DNA clones encoding the human lymphocyte glycoprotein T1/Leu-1. Nature. 1986;323(6086):346–9.

    CAS  PubMed  Google Scholar 

  68. Jamal S, Picker LJ, Aquino DB, McKenna RW, Dawson DB, Kroft SH. Immunophenotypic analysis of peripheral T-cell neoplasms. A multiparameter flow cytometric approach. Am J Clin Pathol. 2001;116(4):512–26.

    CAS  PubMed  Google Scholar 

  69. LeMaistre CF, et al. Phase I trial of H65-RTA immunoconjugate in patients with cutaneous T-cell lymphoma. Blood. 1991;78(5):1173–82.

    CAS  PubMed  Google Scholar 

  70. Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126(8):983–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hill LC, Rouce RH, Smith TS, Yang L, Srinivasan M, Zhang H, et al. Safety and anti-tumor activity of CD5 CAR T-cells in patients with relapsed/refractory T-cell malignancies. Blood. 2019;134:199.

    Google Scholar 

  72. Rabinowich H, et al. Expression and function of CD7 molecule on human natural killer cells. J Immunol. 1994;152(2):517–26.

    CAS  PubMed  Google Scholar 

  73. Ward SG, Parry R, Lefeuvre C, Sansom DM, Westwick J, Lazarovits AI. Antibody ligation of CD7 leads to association with phosphoinositide 3-kinase and phosphatidylinositol 3,4,5-trisphosphate formation in T lymphocytes. Eur J Immunol. 1995;25(2):502–7.

    CAS  PubMed  Google Scholar 

  74. Chan AS, et al. CD7-mediated regulation of integrin adhesiveness on human T cells involves tyrosine phosphorylation-dependent activation of phosphatidylinositol 3-kinase. J Immunol. 1997;159(2):934–42.

    CAS  PubMed  Google Scholar 

  75. Png YT, Vinanica N, Kamiya T, Shimasaki N, Coustan-Smith E, Campana D. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv. 2017;1(25):2348–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gomes-Silva D, Srinivasan M, Sharma S, Lee CM, Wagner DL, Davis TH, et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood. 2017;130(3):285–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, et al. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia. 2018;32(9):1970–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sims JE, Tunnacliffe A, Smith WJ, Rabbitts TH. Complexity of human T-cell antigen receptor beta-chain constant- and variable-region genes. Nature. 1984;312(5994):541–5.

    CAS  PubMed  Google Scholar 

  79. Tunnacliffe A, Kefford R, Milstein C, Forster A, Rabbitts TH. Sequence and evolution of the human T-cell antigen receptor beta-chain genes. Proc Natl Acad Sci U S A. 1985;82(15):5068–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. •• Maciocia PM, et al. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nat Med. 2017;23(12):1416–23. This study forms the basis of the development of a CART therapy directed towards the T-cell receptor for patients with T-cell lymphoma/leukemia.

    CAS  PubMed  Google Scholar 

  81. Onuoha S, Ferrari M, Bulek A, Bughda R, Manzoor S, Srivastava S, et al. Structure guided engineering of highly specific chimeric antigen receptors for the treatment of T cell lymphomas. Blood. 2018;132:1661.

    Google Scholar 

  82. Lee DA. Cellular therapy: adoptive immunotherapy with expanded natural killer cells. Immunol Rev. 2019;290(1):85–99.

    CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by Award Number Grant KL2TR002734 (J.E.B.) from the National Center for Advancing Translational Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Brammer.

Ethics declarations

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center For Advancing Translational Sciences or the National Institutes of Health.

Conflict of Interest

J.E.B. has received honoraria from Seattle Genetics (Speaker’s Bureau, Ad Board) and research funding from Celgene (now Bristol-Myers-Squibb).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stem Cell Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, A.M., Brammer, J.E. Hematopoietic Cell Transplantation and Adoptive Cell Therapy in Peripheral T Cell Lymphoma. Curr Hematol Malig Rep 15, 316–332 (2020). https://doi.org/10.1007/s11899-020-00590-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-020-00590-5

Keywords

Navigation