Skip to main content
Log in

There’s Risk, and Then There’s RISK: The Latest Clinical Prognostic Risk Stratification Models in Myelodysplastic Syndromes

  • Myelodysplastic Syndromes (M Sekeres, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Myelodysplastic syndromes (MDS) include a diverse group of clonal hematopoietic disorders characterized by progressive cytopenias and propensity for leukemic progression. The biologic heterogeneity that underlies MDS translates clinically in wide variations of clinical outcomes. Several prognostic schemes were developed to predict the natural course of MDS, counsel patients, and allow evidence-based, risk-adaptive implementation of therapeutic strategies. The prognostic schemes divide patients into subgroups with similar prognosis, but the extent to which the prognostic prediction applies to any individual patient is more variable. None of these instruments was designed to predict the clinical benefit in relation to any specific MDS therapy. The prognostic impact of molecular mutations is being more recognized and attempts at incorporating it into the current prognostic schemes are ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Raza A, Galili N. The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Nat Rev Cancer. 2012;12:849–59.

    Article  PubMed  CAS  Google Scholar 

  2. •• Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496–506. A large genome-wide study of samples from 439 MDS patients in which the authors identified somatic mutations in 18 genes and studied their prognostic effects and relation to specific disease phenotypes.

    Article  PubMed  CAS  Google Scholar 

  3. Tothova Z, Steensma DP, Ebert BL. New strategies in myelodysplastic syndromes: application of molecular diagnostics to clinical practice. Clin Cancer Res. 2013;19:1637–43.

    Article  PubMed  CAS  Google Scholar 

  4. Zeidan AM, Faltas B, Douglas Smith B, Gore S. Myelodysplastic syndromes: what do hospitalists need to know? J Hosp Med. 2013;8:351–7.

    Article  PubMed  Google Scholar 

  5. Luger SM, Ringden O, Zhang MJ, et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplant. 2012;47:203–11.

    Article  PubMed  CAS  Google Scholar 

  6. Zeidan AM, Linhares Y, Gore S. Current therapy of myelodysplastic syndromes. Blood Rev. (In Press).

  7. Zeidan A, Gore S, Komrokji RS. Higher-risk myelodysplastic syndromes with del5q: is sequential azacitidine-lenalidomide combination the way to go? Expert Rev Hematol. 2013;6:251–4.

    Article  PubMed  CAS  Google Scholar 

  8. Mitchell M, Gore S, Zeidan AM. Iron chelation therapy for myelodysplastic syndromes-associated iron overload: where do we stand? Expert Rev Hematol. (In Press).

  9. Germing U, Kundgen A. Prognostic scoring systems in MDS. Leuk Res. 2012;36:1463–9.

    Article  PubMed  Google Scholar 

  10. Mufti GJ, Stevens JR, Oscier DG, Hamblin TJ, Machin D. Myelodysplastic syndromes: a scoring system with prognostic significance. Br J Haematol. 1985;59:425–33.

    Article  PubMed  CAS  Google Scholar 

  11. Varela BL, Chuang C, Woll JE, Bennett JM. Modifications in the classification of primary myelodysplastic syndromes: the addition of a scoring system. Hematol Oncol. 1985;3:55–63.

    Article  PubMed  CAS  Google Scholar 

  12. Faltas B, Zeidan AM, Gergis U. Myelodysplastic syndromes: towards a risk-adaptive treatment approach. Expert Rev Hematol. (In Press).

  13. Bejar R, Tiu RV, Sekeres MA, Komrokji RS. Myelodysplastic syndromes. Am Soc Clin Oncol Educ Book. 2013;2013:256–70.

    Article  Google Scholar 

  14. Dayyani F, Conley AP, Strom SS, et al. Cause of death in patients with lower-risk myelodysplastic syndrome. Cancer. 2010;116:2174–9.

    PubMed  Google Scholar 

  15. Bennett JM. The myelodysplastic syndromes: a personal recollection of four decades of classification and prognostic scoring systems. Leuk Lymphoma. 2013. [Epub ahead of print].

  16. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33:451–8.

    Article  PubMed  CAS  Google Scholar 

  17. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51:189–99.

    PubMed  CAS  Google Scholar 

  18. Morel P, Hebbar M, Lai JL, et al. Cytogenetic analysis has strong independent prognostic value in de novo myelodysplastic syndromes and can be incorporated in a new scoring system: a report on 408 cases. Leukemia. 1993;7:1315–23.

    PubMed  CAS  Google Scholar 

  19. Sanz GF, Sanz MA, Vallespi T, et al. Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes: a multivariate analysis of prognostic factors in 370 patients. Blood. 1989;74:395–408.

    PubMed  CAS  Google Scholar 

  20. Toyama K, Ohyashiki K, Yoshida Y, et al. Clinical implications of chromosomal abnormalities in 401 patients with myelodysplastic syndromes: a multicentric study in Japan. Leukemia. 1993;7:499–508.

    PubMed  CAS  Google Scholar 

  21. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.

    PubMed  CAS  Google Scholar 

  22. Cutler CS, Lee SJ, Greenberg P, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104:579–85.

    Article  PubMed  CAS  Google Scholar 

  23. Greenberg PL, Attar E, Bennett JM, et al. NCCN clinical practice guidelines in oncology: myelodysplastic syndromes. J Natl Compr Cancer Netw. 2011;9:30–56.

    Google Scholar 

  24. Koreth J, Pidala J, Perez WS, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. J Clin Oncol. 2013. [Epub ahead of print].

  25. •• Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65. A large study of an international database of 7012 patients that led to the revision of the original international prognostic scoring system (IPSS) and adoption of the revised IPSS (IPSS-R).

    Article  PubMed  CAS  Google Scholar 

  26. Sierra J, Perez WS, Rozman C, et al. Bone marrow transplantation from HLA-identical siblings as treatment for myelodysplasia. Blood. 2002;100:1997–2004.

    PubMed  CAS  Google Scholar 

  27. Lee JH, Lee JH, Lim SN, et al. Allogeneic hematopoietic cell transplantation for myelodysplastic syndrome: prognostic significance of pre-transplant IPSS score and comorbidity. Bone Marrow Transplant. 2010;45:450–7.

    Article  PubMed  Google Scholar 

  28. Malcovati L, Porta MG, Pascutto C, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23:7594–603.

    Article  PubMed  Google Scholar 

  29. Schanz J, Steidl C, Fonatsch C, et al. Coalesced multicentric analysis of 2,351 patients with myelodysplastic syndromes indicates an underestimation of poor-risk cytogenetics of myelodysplastic syndromes in the international prognostic scoring system. J Clin Oncol. 2011;29:1963–70.

    Article  PubMed  Google Scholar 

  30. Malcovati L, Germing U, Kuendgen A, et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol. 2007;25:3503–10.

    Article  PubMed  Google Scholar 

  31. Zeidan AM, Smith BD, Komrokji RS, Gore SD. Prognostication in myelodysplastic syndromes: beyond the International Prognostic Scoring System (IPSS). Am J Med. 2013;126:e25.

    Article  PubMed  Google Scholar 

  32. Garcia-Manero G, Shan J, Faderl S, et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2008;22:538–43.

    Article  PubMed  CAS  Google Scholar 

  33. Bejar R, Stevenson KE, Caughey BA, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30:3376–82.

    Article  PubMed  Google Scholar 

  34. Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol. 1999;17:3835–49.

    PubMed  CAS  Google Scholar 

  35. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  PubMed  CAS  Google Scholar 

  36. Germing U, Gattermann N, Strupp C, Aivado M, Aul C. Validation of the WHO proposals for a new classification of primary myelodysplastic syndromes: a retrospective analysis of 1600 patients. Leuk Res. 2000;24:983–92.

    Article  PubMed  CAS  Google Scholar 

  37. Alessandrino EP, Della Porta MG, Bacigalupo A, et al. WHO classification and WPSS predict posttransplantation outcome in patients with myelodysplastic syndrome: a study from the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Blood. 2008;112:895–902.

    Article  PubMed  CAS  Google Scholar 

  38. Germing U, Strupp C, Kuendgen A, et al. Prospective validation of the WHO proposals for the classification of myelodysplastic syndromes. Haematologica. 2006;91:1596–604.

    PubMed  Google Scholar 

  39. Park MJ, Kim HJ, Kim SH, et al. Is International Prognostic Scoring System (IPSS) still standard in predicting prognosis in patients with myelodysplastic syndrome? External validation of the WHO Classification-Based Prognostic Scoring System (WPSS) and comparison with IPSS. Eur J Haematol. 2008;81:364–73.

    PubMed  Google Scholar 

  40. Komrokji RS, Corrales-Yepez M, Al Ali N, et al. Validation of the MD Anderson Prognostic Risk Model for patients with myelodysplastic syndrome. Cancer. 2012;118:2659–64.

    Article  PubMed  Google Scholar 

  41. Cazzola M. Risk assessment in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Haematologica. 2011;96:349–52.

    Article  PubMed  Google Scholar 

  42. Bowen DT, Fenaux P, Hellstrom-Lindberg E, de Witte T. Time-dependent prognostic scoring system for myelodysplastic syndromes has significant limitations that may influence its reproducibility and practical application. J Clin Oncol. 2008;26:1181–2. author reply.

    Article  Google Scholar 

  43. Malcovati L, Della Porta MG, Strupp C, et al. Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the WHO classification-based Prognostic Scoring System (WPSS). Haematologica. 2011;96:1433–40.

    Article  PubMed  CAS  Google Scholar 

  44. Komrokji RS, Padron E, Lancet JE, List AF. Prognostic factors and risk models in myelodysplastic syndromes. Clin Lymphoma Myeloma Leuk. (In Press).

  45. Kantarjian H, O'Brien S, Ravandi F, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113:1351–61.

    Article  PubMed  CAS  Google Scholar 

  46. Cazzola M, Della Porta MG, Travaglino E, Malcovati L. Classification and prognostic evaluation of myelodysplastic syndromes. Semin Oncol. 2011;38:627–34.

    Article  PubMed  CAS  Google Scholar 

  47. Komrokji RS, Corrales-Yepez M, Al Ali NH, et al. Validation of the lower risk MD Anderson prognostic scoring system for patients with myelodysplastic syndromes [Abstract 3826]. Presented at the American Society of Hematology 54th Annual Meeting. Atlanta, Georgia; December 2012.

  48. •• Schanz J, Tuchler H, Sole F, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30:820–9. A large study of the cytogenetics of 2,902 patients with de novo MDS treated with supportive care (SC). This study defined 19 cytogenetic groups, thereby allowing cytogenetic classification of 91 % of patients. Based on this study, a novel 5-group cytogenetic prognostic classification system was created and later adopted in the IPSS-R.

    Article  PubMed  Google Scholar 

  49. Mishra A, Corrales-Yepez M, Ali NA, et al. Validation of the revised International Prognostic Scoring System in treated patients with myelodysplastic syndromes. Am J Hematol. 2013. [Epub ahead of print].

  50. Lamarque M, Raynaud S, Itzykson R, et al. The revised IPSS is a powerful tool to evaluate the outcome of MDS patients treated with azacitidine: the GFM experience. Blood. 2012;120:5084–5.

    Article  PubMed  CAS  Google Scholar 

  51. Breccia M, Salaroli A, Loglisci G, Alimena G. Revised IPSS (IPSS-R) stratification and outcome of MDS patients treated with azacitidine. Ann Hematol. 2013;92:411–2.

    Article  PubMed  Google Scholar 

  52. Voso MT, Fenu S, Latagliata R, et al. Revised International Prognostic Scoring System (IPSS) predicts survival and leukemic evolution of myelodysplastic syndromes significantly better than IPSS and WHO prognostic scoring system: validation by the Gruppo Romano Mielodisplasie Italian Regional Database. J Clin Oncol. 2013. [Epub ahead of print].

  53. Haase D, Germing U, Schanz J, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110:4385–95.

    Article  PubMed  CAS  Google Scholar 

  54. Tiu RV, Visconte V, Traina F, et al. Updates in cytogenetics and molecular markers in MDS. Curr Hematol Malig Rep. 2011;6:126–35.

    Article  PubMed  Google Scholar 

  55. Makishima H, Rataul M, Gondek LP, et al. FISH and SNP-A karyotyping in myelodysplastic syndromes: improving cytogenetic detection of del(5q), monosomy 7, del(7q), trisomy 8 and del(20q). Leuk Res. 2010;34:447–53.

    Article  PubMed  CAS  Google Scholar 

  56. Otrock ZK, Tiu RV, Maciejewski JP, Sekeres MA. The need for additional genetic markers for myelodysplastic syndrome stratification: what does the future hold for prognostication? Expert Rev Hematol. 2013;6:59–68.

    Article  PubMed  CAS  Google Scholar 

  57. Bernasconi P, Klersy C, Boni M, et al. Validation of the new comprehensive cytogenetic scoring system (NCCSS) on 630 consecutive de novo MDS patients from a single institution. Am J Hematol. 2013;88:120–9.

    Article  PubMed  Google Scholar 

  58. Deeg HJ, Scott BL, Fang M, et al. Five-group cytogenetic risk classification, monosomal karyotype, and outcome after hematopoietic cell transplantation for MDS or acute leukemia evolving from MDS. Blood. 2012;120:1398–408.

    Article  PubMed  CAS  Google Scholar 

  59. Gangat N, Patnaik MM, Begna K, et al. Evaluation of revised IPSS cytogenetic risk stratification and prognostic impact of monosomal karyotype in 783 patients with primary myelodysplastic syndromes. Am J Hematol. 2013. [Epub ahead of print].

  60. Valcarcel D, Adema V, Sole F, et al. Complex, not monosomal, karyotype is the cytogenetic marker of poorest prognosis in patients with primary myelodysplastic syndrome. J Clin Oncol. 2013;31:916–22.

    Article  PubMed  CAS  Google Scholar 

  61. Mallo M, Cervera J, Schanz J, et al. Impact of adjunct cytogenetic abnormalities for prognostic stratification in patients with myelodysplastic syndrome and deletion 5q. Leukemia. 2011;25:110–20.

    Article  PubMed  CAS  Google Scholar 

  62. Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol. 2011;29:504–15.

    Article  PubMed  CAS  Google Scholar 

  63. Kolquist KA, Schultz RA, Furrow A, et al. Microarray-based comparative genomic hybridization of cancer targets reveals novel, recurrent genetic aberrations in the myelodysplastic syndromes. Cancer Genet. 2011;204:603–28.

    Article  PubMed  CAS  Google Scholar 

  64. Thiel A, Beier M, Ingenhag D, et al. Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance. Leukemia. 2011;25:387–99.

    Article  PubMed  CAS  Google Scholar 

  65. Starczynowski DT, Vercauteren S, Telenius A, et al. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood. 2008;112:3412–24.

    Article  PubMed  CAS  Google Scholar 

  66. Tiu RV, Gondek LP, O'Keefe CL, et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood. 2011;117:4552–60.

    Article  PubMed  CAS  Google Scholar 

  67. Abdel-Wahab O, Figueroa ME. Interpreting new molecular genetics in myelodysplastic syndromes. Hematol Am Soc Hematol Educ Program. 2012;2012:56–64.

    Google Scholar 

  68. Abdel-Wahab O, Levine R. The spliceosome as an indicted conspirator in myeloid malignancies. Cancer Cell. 2011;20:420–3.

    Article  PubMed  CAS  Google Scholar 

  69. Bejar R, Stevenson K, Stojanov P, et al. Detection of recurrent mutations by pooled targeted next-generation sequencing in MDS patients prior to treatment with hypomethylating agents or stem cell transplantation [Abstract 311]. Presented at the American Society of Hematology 54th Annual Meeting. Atlanta, Georgia; December 2012.

  70. Bejar R, Stevenson K, Stojanov P, et al. Next-generation sequencing of 213 MDS patient samples identifies mutation profiles associated with response to hypomethylating agents and overall survival. Leuk Res. 2013;37:S19–20.

    Article  Google Scholar 

  71. Breccia M, Federico V, Latagliata R, et al. Evaluation of comorbidities at diagnosis predicts outcome in myelodysplastic syndrome patients. Leuk Res. 2011;35:159–62.

    Article  PubMed  Google Scholar 

  72. Sperr WR, Wimazal F, Kundi M, et al. Comorbidity as prognostic variable in MDS: comparative evaluation of the HCT-CI and CCI in a core dataset of 419 patients of the Austrian MDS Study Group. Ann Oncol. 2010;21:114–9.

    Article  PubMed  CAS  Google Scholar 

  73. Wang R, Gross CP, Halene S, Ma X. Comorbidities and survival in a large cohort of patients with newly diagnosed myelodysplastic syndromes. Leuk Res. 2009;33:1594–8.

    Article  PubMed  Google Scholar 

  74. Naqvi K, Garcia-Manero G, Sardesai S, et al. Association of comorbidities with overall survival in myelodysplastic syndrome: development of a prognostic model. J Clin Oncol. 2011;29:2240–6.

    Article  PubMed  Google Scholar 

  75. Breccia M, Federico V, Loglisci G, Salaroli A, Serrao A, Alimena G. Evaluation of overall survival according to myelodysplastic syndrome-specific comorbidity index in a large series of myelodysplastic syndromes. Haematologica. 2011;96:e41–2.

    Article  PubMed  Google Scholar 

  76. Della Porta MG, Malcovati L, Strupp C, et al. Risk stratification based on both disease status and extra-hematologic comorbidities in patients with myelodysplastic syndrome. Haematologica. 2011;96:441–9.

    Article  PubMed  Google Scholar 

  77. Breccia M, Fianchi L, Lunghi M, et al. Newly proposed therapy-related myelodysplastic syndrome prognostic score predicts significant differences in overall survival and leukemia-free survival in patients treated with azacitidine. Leuk Lymphoma. 2012. [Epub ahead of print].

  78. Ma X, Lim U, Park Y, et al. Obesity, lifestyle factors, and risk of myelodysplastic syndromes in a large US cohort. Am J Epidemiol. 2009;169:1492–9.

    Article  PubMed  Google Scholar 

  79. Ma X. Epidemiology of myelodysplastic syndromes. Am J Med. 2012;125:S2–5.

    Article  PubMed  Google Scholar 

  80. Stauder R. The challenge of individualised risk assessment and therapy planning in elderly high-risk myelodysplastic syndromes (MDS) patients. Ann Hematol. 2012;91:1333–43.

    Article  PubMed  Google Scholar 

  81. Komrokji RS, Corrales-Yepez M, Kharfan-Dabaja MA, et al. Hypoalbuminemia is an independent prognostic factor for overall survival in myelodysplastic syndromes. Am J Hematol. 2012;87:1006–9.

    Article  PubMed  CAS  Google Scholar 

  82. Della Porta MG, Malcovati L, Boveri E, et al. Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol. 2009;27:754–62.

    Article  PubMed  Google Scholar 

  83. Della Porta MG, Picone C, Pascutto C, et al. Multicenter validation of a reproducible flow cytometric score for the diagnosis of low-grade myelodysplastic syndromes: results of a European LeukemiaNET study. Haematologica. 2012;97:1209–17.

    Article  PubMed  Google Scholar 

  84. van de Loosdrecht AA, Ireland R, Kern W, et al. Rationale for the clinical application of flow cytometry in patients with myelodysplastic syndromes: position paper of an International Consortium and the European LeukemiaNet Working Group. Leuk Lymphoma. 2013;54:472–5.

    Article  PubMed  Google Scholar 

  85. Westers TM, Ireland R, Kern W, et al. Standardization of flow cytometry in myelodysplastic syndromes: a report from an international consortium and the European LeukemiaNet Working Group. Leukemia. 2012;26:1730–41.

    Article  PubMed  CAS  Google Scholar 

  86. Mailloux AW, Sugimori C, Komrokji RS, et al. Expansion of effector memory regulatory t cells represents a novel prognostic factor in lower risk myelodysplastic syndrome. J Immunol. 2012;189:3198–208.

    Article  PubMed  CAS  Google Scholar 

  87. Saunthararajah Y, Nakamura R, Wesley R, Wang QJ, Barrett AJ. A simple method to predict response to immunosuppressive therapy in patients with myelodysplastic syndrome. Blood. 2003;102:3025–7.

    Article  PubMed  CAS  Google Scholar 

  88. Sloand EM, Wu CO, Greenberg P, Young N, Barrett J. Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. J Clin Oncol. 2008;26:2505–11.

    Article  PubMed  Google Scholar 

  89. Hellstrom-Lindberg E, Gulbrandsen N, Lindberg G, et al. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life. Br J Haematol. 2003;120:1037–46.

    Article  PubMed  CAS  Google Scholar 

  90. Park S, Grabar S, Kelaidi C, et al. Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience. Blood. 2008;111:574–82.

    Article  PubMed  CAS  Google Scholar 

  91. Itzykson R, Thepot S, Quesnel B, et al. Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine. Blood. 2011;117:403–11.

    Article  PubMed  CAS  Google Scholar 

  92. Itzykson R, Thepot S, Quesnel B, et al. Long-term outcome of higher-risk MDS patients treated with azacitidine: an update of the GFM compassionate program cohort. Blood. 2012;119:6172–3.

    Article  PubMed  CAS  Google Scholar 

  93. van der Helm LH, Alhan C, Wijermans PW, et al. Platelet doubling after the first azacitidine cycle is a promising predictor for response in myelodysplastic syndromes (MDS), chronic myelomonocytic leukaemia (CMML) and acute myeloid leukaemia (AML) patients in the Dutch azacitidine compassionate named patient programme. Br J Haematol. 2011;155:599–606.

    Article  PubMed  Google Scholar 

  94. Ebert BL, Galili N, Tamayo P, et al. An erythroid differentiation signature predicts response to lenalidomide in myelodysplastic syndrome. PLoS Med. 2008;5:e35.

    Article  PubMed  Google Scholar 

  95. Sardnal V, Rouquette A, Kaltenbach S, et al. A G polymorphism in the CRBN gene acts as a biomarker of response to treatment with lenalidomide in low/int-1 risk MDS without del(5q). Leukemia. 2013;27:1610–3.

    Article  PubMed  CAS  Google Scholar 

  96. Itzykson R, Kosmider O, Cluzeau T, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia. 2011;25:1147–52.

    Article  PubMed  CAS  Google Scholar 

  97. Sekeres MA, Tiu RV, Komrokji R, et al. Phase 2 study of the lenalidomide and azacitidine combination in patients with higher-risk myelodysplastic syndromes. Blood. 2012;120:4945–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

A. Zeidan declares that he has no conflict of interest.

R. Komrokji has received grant and payment for development of educational presentations including service on speakers’ bureaus from Celgene.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer M. Zeidan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeidan, A.M., Komrokji, R.S. There’s Risk, and Then There’s RISK: The Latest Clinical Prognostic Risk Stratification Models in Myelodysplastic Syndromes. Curr Hematol Malig Rep 8, 351–360 (2013). https://doi.org/10.1007/s11899-013-0172-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0172-3

Keywords

Navigation