Skip to main content

Advertisement

Log in

Spot Urinary Sodium Measurements: the Future Direction of the Treatment and Follow-up of Patients with Heart Failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Heart failure is characterized by episodes of congestion with need for hospitalization. The current metrics lack the accuracy to predict and prevent episodes of congestion and to guide diuretic titration to reach euvolemia in case of decompensation. This article aims to provide answers to the role of urinary sodium measurements in acute and chronic heart failure.

Recent Findings

In acute heart failure, urinary sodium concentrations at the moment of admission and after diuretic administration are correlated with short- and long-term outcome. As this is a reflection of the degree of sodium retention, it can be used as a guide in the diuretic titration. In chronic heart failure, it might be used to predict and consequently prevent episodes of decompensation.

Summary

Urinary sodium measurements hold great promises to be a novel diagnostic and therapeutic parameter in patients with acute and chronic heart failure. However, more research is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726.

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382(20):1883–93.

    Article  CAS  PubMed  Google Scholar 

  3. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.

    Article  CAS  PubMed  Google Scholar 

  4. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.

    Article  CAS  PubMed  Google Scholar 

  5. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.

    Article  PubMed  Google Scholar 

  6. Dharmarajan K, Wang Y, Lin Z, Normand ST, Ross JS, Horwitz LI, et al. Association of changing hospital readmission rates with mortality rates after hospital discharge. JAMA. 2017;318(3):270–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Krumholz HM, Hsieh A, Dreyer RP, Welsh J, Desai R, Dharmarajan K. Trajectories of risk for specific readmission diagnoses after hospitalization for heart failure, acute myocardial infarction, or pneumonia. PLoS ONE. 2016;11(10):1–14.

    Article  Google Scholar 

  8. Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Hear Fail. 2012;5(1):54–62.

    Article  Google Scholar 

  9. Mullens W, Damman K, Harjola V, Mebazaa A, Rocca HB, Martens P, et al. The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:137–55.

    Article  PubMed  Google Scholar 

  10. Mullens W, Damman K, Testani JM, Martens P, Mueller C, Lassus J, et al. Evaluation of kidney function throughout the heart failure trajectory – a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22(4):584–603.

    Article  PubMed  Google Scholar 

  11. Cobo M, Zegri I, Paloma R, Garcia-Gomez S, Garcia-Rodriguez D, Dominguez-Rodriguez F, et al. Usefulness of natriuresis to predict in-hospital diuretic resistance. Am J Cardiovasc Dis. 2020;10(4):350–5.

    Google Scholar 

  12. Tersalvi G, Dauw J, Gasperetti A, Winterton D, Cioffi GM, Scopigni F, et al. The value of urinary sodium assessment in acute heart failure. Eur Hear Journal Acute Cardiovasc Care. 2021;10(2):216–23.

    Article  Google Scholar 

  13. Mullens W, Verbrugge FH, Nijst P, Hong W. Renal sodium avidity in heart failure : from pathophysiology to treatment strategies. Eur Heart J. 2017;38:1872–82.

    Article  CAS  PubMed  Google Scholar 

  14. Nijst P, Verbrugge F, Grieten L, Dupont M, Steels P, Tang WHW, et al. The pathophysiological role of interstitial sodium in heart failure. J Am Coll Cardiol. 2015;65(4):378–88.

    Article  CAS  PubMed  Google Scholar 

  15. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martens P, Tang WHW, Mullens W. Renal sodium avidity, the prevailing renal target in heart failure. Eur Heart J. 2021;42(43):4478–81.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Verbrugge FH, Dupont M, Steels P, Grieten L, Swennen Q, Tang WHW, et al. The kidney in congestive heart failure : ‘ are natriuresis, sodium and diuretics really the good, the bad and the ugly?’ Eur J Heart Fail. 2014;16:133–42.

    Article  CAS  PubMed  Google Scholar 

  18. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Vol. 145. Circulation. 2022;2022:895–1032.

    Google Scholar 

  19. Mullens W, Dauw J, Martens P, Verbrugge FH, Nijst P, Meekers E, et al. Acetazolamide in acute decompensated heart failure with volume overload. N Engl J Med. 2022;387(13):1185–95.

    Article  CAS  PubMed  Google Scholar 

  20. Matsue Y, Damman K, Voors AA, Kagiyama N, Yamaguchi T, Kuroda S, Okumura T, et al. Time-to-furosemide treatment and mortality in patients hospitalized with acute heart failure. J Am Coll Cardiol. 2017;69(25):3042–51. https://doi.org/10.1016/j.jacc.2017.04.042.

    Article  PubMed  Google Scholar 

  21. Testani JM, Chen J, Mccauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122:265–72.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Testani JM, Brisco MA, Kociol RD, Jacoby D. Substantial discrepancy between fluid and weight loss during acute decompensated geart failure treatment. Am J Med. 2015;128(7):776–83.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cox ZL, Rao VS, Testani JM. Classic and novel mechanisms of diuretic resistance in cardiorenal syndrome. Kidney360. 2022;3. https://doi.org/10.34067/KID.0006372021.

  24. Neuwirt H, Burtscher A, Cherney D, Mayer G, Ebenbichler C. Tubuloglomerular feedback in renal glucosuria: mimicking long-term SGLT-2 inhibitor therapy. Kidney Med. 2020;2(1):76–9.

    Article  PubMed  Google Scholar 

  25. Testani JM, Hanberg JS, Cheng S, Rao V, Onyebeke C, Laur O, et al. Rapid and highly accurate prediction of poor loop diuretic natriuretic response in patients with heart failure. Circ Hear Fail Hear Fail. 2015;9(1):1–8.

    Google Scholar 

  26. Verbrugge FH, Nijst P, Dupont M, Penders J, Tang WHW, Mullens W. Urinary composition during decongestive treatment in heart failure with reduced ejection fraction. Circ Hear Fail. 2014;7:766–72.

    Article  CAS  Google Scholar 

  27. Rao VS, Ivey-Miranda JB, Cox ZL, Riello R, Griffin M, Fleming J, et al. Natriuretic equation to predict loop diuretic response in patients with heart failure. JACC. 2021;77(6):695–708.

    Article  CAS  PubMed  Google Scholar 

  28. Singh D, Shrestha K, Testani JM, Verbrugge FH, Dupont M, Mullens W, et al. Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure. J Card Fail. 2014;20(6):392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ward A, Heel R. Bumetanide: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic use. Drugs. 1984;28:426–64.

    Article  CAS  PubMed  Google Scholar 

  30. Damman K, Ter Maaten JM, Coster JE, Krikken JA, van Deursen VM, Krijnen HK, et al. Clinical importance of urinary sodium excretion in acute heart failure. Eur J Heart Fail. 2020;22(8):1438–47.

    Article  CAS  PubMed  Google Scholar 

  31. Gleason O, Meegan G, Fleming J, Griffin M, Ivey-Miranda J, Cox Z, et al. Validation of natriuretic response prediction equation in patients with acute decompensated heart failure. J Card Fail. 2020;26(10):S2.

    Article  Google Scholar 

  32. Brinkley DM, Burpee LJ, Chaudhry SP, Smallwood JA, Lindenfeld JA, Lakdawala NK, et al. Spot urine sodium as triage for effective diuretic infusion in an ambulatory heart failure unit. J Card Fail. 2018;24(6):349–54.

    Article  CAS  PubMed  Google Scholar 

  33. Galluzzo A, Frea S, Boretto P, Pidello S, Volpe A, Canavosio FG, et al. Spot urinary sodium in acute decompensation of advanced heart failure and dilutional hyponatremia: insights from DRAIN trial. Clin Res Cardiol. 2020;109(10):1251–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ravera A, ter Maaten JM, Metra M. Diuretic Resistance and Chronic Heart Failure. In Cardiorenal Syndrome in Heart Failure. 2019 Springer International Publishing; 2020. 121–135. https://doi.org/10.1007/978-3-030-21033-5_9

  35. Biegus J, Zymliński R, Testani J, Marciniak D, Zdanowicz A, Jankowska EA, et al. Renal profiling based on estimated glomerular filtration rate and spot urine sodium identifies high-risk acute heart failure patients. Eur J Heart Fail. 2021;23(5):729–39.

    Article  CAS  PubMed  Google Scholar 

  36. García-Magallón B, Cobo-Marcos M, Martiarena AD, Hernández EM, Martín Jiménez ML, García AM, et al. Role of early assesment of diuresis and natriuresis in detecting in-hospital diuretic resistance in acute heart failure. Front Physiol. 2022;13(May):1–5.

    Google Scholar 

  37. Ter Maaten JM, Valente MAE, Damman K, Hillege HL, Navis G, Voors AA. Diuretic response in acute heart failure - pathophysiology, evaluation, and therapy. Nat Rev Cardiol. 2015;12(3):184–92.

    Article  PubMed  Google Scholar 

  38. Elias C, Oliveira D, Soares-Carreira M, Amorim M, Araújo JP, Bettencourt P, et al. The ratio of furosemide dosage to urinary sodium concentration predicts mortality in patients with chronic stable heart failure. Polish Arch Intern Med. 2021;131(10):1–8.

    Google Scholar 

  39. Verbrugge FH, Nijst P, Dupont M, Reynders C, Penders J, Tang WHW, et al. Prognostic value of glomerular filtration changes versus natriuretic response in decompensated heart failure with reduced ejection. J Card Fail. 2014;20(11):817–24.

    Article  CAS  PubMed  Google Scholar 

  40. Verbrugge FH, Dupont M, Bertrand PB, Nijst P, Penders J, Dens J, et al. Determinants and impact of the natriuretic response to diuretic therapy in heart failure with reduced ejection fraction and volume overload. Acta Cardiol. 2015;70(3):265–73.

    Article  PubMed  Google Scholar 

  41. Ferreira JP, Girerd N, Medeiros PB, Santos M, Carvalho HC, Bettencourt P, et al. Spot urine sodium excretion as prognostic marker in acutely decompensated heart failure: the spironolactone effect. Clin Res Cardiol. 2016;105(6):489–507.

    Article  CAS  PubMed  Google Scholar 

  42. Doering A, Jenkins CA, Storrow AB, Lindenfeld JA, Fermann GJ, Miller KF, et al. Markers of diuretic resistance in emergency department patients with acute heart failure. Int J Emerg Med. 2017;10(1):17. https://doi.org/10.1186/s12245-017-0143-x.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Luk A, Groarke JD, Desai AS, Mahmood SS, Gopal DM, Joyce E, et al. First spot urine sodium after initial diuretic identifies patients at high risk for adverse outcome after heart failure hospitalization. Am Heart J. 2018;203:95–100.

    Article  CAS  PubMed  Google Scholar 

  44. Honda S, Nagai T, Nishimura K, Nakai M, Honda Y, Nakano H, et al. Long-term prognostic significance of urinary sodium concentration in patients with acute heart failure. Int J Cardiol. 2018;254:189–94.

    Article  PubMed  Google Scholar 

  45. Collins SP, Jenkins CA, Baughman A, Miller KF, Storrow AB, Han JH, et al. Early urine electrolyte patterns in patients with acute heart failure. ESC Hear Fail. 2019;6(1):80–8.

    Article  Google Scholar 

  46. Biegus J, Zymliński R, Sokolski M, Todd J, Cotter G, Metra M, et al. Serial assessment of spot urine sodium predicts effectiveness of decongestion and outcome in patients with acute heart failure. Eur J Heart Fail. 2019;21(5):624–33.

    Article  CAS  PubMed  Google Scholar 

  47. Hodson DZ, Griffin M, Mahoney D, Ahmad T, Turner J, Wilson FP, et al. Natriuretic response is highly variable and associated with six-month survival: insights from the ROSE-AHF trial. JACC Hear Fail. 2019;7(5):383–91.

    Article  Google Scholar 

  48. Cunningham J, Sun J, Mc Causland F, Ly S, Anstrom K, Lindenfeld J, et al. Lower urine sodium predicts longer length of stay in acute heart failure patients: insights from the ROSE AHF trial. Clin Cardiol. 2020;43:43–9.

    Article  PubMed  Google Scholar 

  49. Cox ZL, Rao VS, Ivey-Miranda JB, Moreno-Villagomez J, Mahoney D, Ponikowski P, et al. Compensatory post-diuretic renal sodium reabsorption is not a dominant mechanism of diuretic resistance in acute heart failure. Eur Heart J. 2021;42(43):4468–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de la Espriella R, Núñez E, Llàcer P, García-Blas S, Ventura S, Núñez JM, et al. Early urinary sodium trajectory and risk of adverse outcomes in acute heart failure and renal dysfunction. Rev Española Cardiol (English Ed). 2021;74(7):616–23.

    Google Scholar 

  51. Biegus J, Zymliński R, Fudim M, Testani J, Sokolski M, Marciniak D, et al. Spot urine sodium in acute heart failure: differences in prognostic value on admission and discharge. ESC Hear Fail. 2021;8(4):2597–602.

    Article  Google Scholar 

  52. Caravaca Perez P, Nuche J, Moran Fernandez L, Lora D, Blazquez-Bermejo Z, Lopez-Azor JC, et al. Potential role of natriuretic response to furosemide stress test during acute heart failure. Circ Hear Fail. 2021;14(6):E008166.

    Article  Google Scholar 

  53. Martens P, Chen HH, Verbrugge FH, Testani JT, Mullens W, Tang WHW. Assessing intrinsic renal sodium avidity in acute heart failure: implications in predicting and guiding decongestion. Eur J Heart Fail. 2022;24(10):1978–87. https://doi.org/10.1002/ejhf.2662.

    Article  CAS  PubMed  Google Scholar 

  54. ter Maaten JM, Beldhuis IE, van der Meer P, Krikken JA, Coster JE, Nieuwland W, et al. Natriuresis-guided therapy in acute heart failure: rationale and design of the Pragmatic Urinary Sodium-based treatment algoritHm in Acute Heart Failure (PUSH-AHF) trial. Eur J Heart Fail. 2022;24:385–92.

    Article  PubMed  Google Scholar 

  55. Dauw J, Lelonek M, Zegri-Reiriz I, Paredes-Paucar CP, Zara C, George V, et al. Rationale and design of the efficacy of a standardized diuretic protocol in acute heart failure study. ESC Hear Fail. 2021;8:4685–92.

    Article  Google Scholar 

  56. Verbrugge FH, Martens P, Boonen L, Nijst P, Verhaert D, Noyens P, et al. Loop diuretic down-titration in stable chronic heart failure is often achievable, especially when urinary chloride concentration is low. Acta Cardiol. 2017;73(4):1–7.

    Google Scholar 

  57. Martens P, Dupont M, Verbrugge H, Damman K, Degryse N, Nijst P, et al. Urinary sodium profiling in chronic heart failure to detect development of acute decompensated heart failure. JACC Hear Fail. 2019;7(5):404–14.

    Article  Google Scholar 

  58. Dauw J, Martens P, Tersalvi G, Schouteden J, Deferm S, Gruwez H, et al. Diuretic response and effects of diuretic omission in ambulatory heart failure patients on chronic low-dose loop diuretic therapy. Eur J Heart Fail. 2021;23(7):1110–9.

    Article  CAS  PubMed  Google Scholar 

  59. Ganes A, Davis JA, Virtanen JK, Voutilainen A, Tuomainen TP, Atherton JJ, et al. Urinary sodium concentration predicts time to major adverse coronary events and all-cause mortality in men with heart failure over a 28–33-year period: a prospective cohort study. BMC Cardiovasc Disord. 2022;22(1):391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rohde LE, Rover MM, Figueiredo Neto JA, Danzmann LC, Bertoldi EG, Simoes MV, et al. Short-term diuretic withdrawal in stable outpatients with mild heart failure and no fluid retention receiving optimal therapy : a. Eur Heart J. 2019;40:3605–12.

    Article  PubMed  Google Scholar 

  61. Martens P, Verbrugge FH, Boonen L, Nijst P, Dupont M, Mullens W. Value of routine investigations to predict loop diuretic down-titration success in stable heart failure. Int J Cardiol. 2018;250:171–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyne Meekers.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meekers, E., Mullens, W. Spot Urinary Sodium Measurements: the Future Direction of the Treatment and Follow-up of Patients with Heart Failure. Curr Heart Fail Rep 20, 88–100 (2023). https://doi.org/10.1007/s11897-023-00591-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-023-00591-4

Keywords

Navigation