Skip to main content

Advertisement

Log in

Cardiotoxicity of Anti-Cancer Radiation Therapy: a Focus on Heart Failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

As the percentage of patients achieving long-term survival following treatment of their cancer grows, it is increasingly important to understand the long-term toxicities of cancer-directed treatment. In this review, we highlight the recent findings regarding radiation-induced cardiotoxicity across multiple disease sites, with a particular focus on heart failure.

Recent Findings

Despite its relative lack of study historically, radiation-induced heart failure has now recently been implicated in several studies of breast cancer, lung cancer, esophageal cancer, and lymphoma as a non-trivial potential consequence of thoracic radiotherapy. Data regarding specific cardiac dosimetric endpoints relevant to cardiotoxicity continue to accumulate.

Summary

Radiation-induced heart failure is a rare but significant toxicity of thoracic radiotherapy, that is likely underreported. Important areas for future focus include understanding the interplay between thoracic radiotherapy and concurrent cardiotoxic systemic therapy as well as development of potential mitigation strategies and novel therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  2. Sturgeon KM, Deng L, Bluethmann SM, Zhou S, Trifiletti DM, Jiang C, et al. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J. 2019;40(48):3889–97. https://doi.org/10.1093/eurheartj/ehz766.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen L, Ta S, Wu W, Wang C, Zhang Q. Prognostic and added value of echocardiographic strain for prediction of adverse outcomes in patients with locally advanced non-small cell lung cancer after radiotherapy. Ultrasound Med Biol. 2019;45(1):98–107. https://doi.org/10.1016/j.ultrasmedbio.2018.09.012.

    Article  PubMed  Google Scholar 

  4. Fourati N, Charfeddine S, Chaffai I, Dhouib F, Farhat L, Boukhris M, et al. Subclinical left ventricle impairment following breast cancer radiotherapy: is there an association between segmental doses and segmental strain dysfunction? Int J Cardiol. 2021;345:130–6. https://doi.org/10.1016/j.ijcard.2021.10.026.

    Article  CAS  PubMed  Google Scholar 

  5. Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol. 2015;5:39. https://doi.org/10.3389/fonc.2015.00039.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149–61. https://doi.org/10.1016/j.radonc.2010.09.002.

    Article  CAS  PubMed  Google Scholar 

  7. Rodemann HP, Peterson HP, Schwenke K, von Wangenheim KH. Terminal differentiation of human fibroblasts is induced by radiation. Scanning Microsc. 1991;5(4):1135–42 (discussion 42-3).

    CAS  PubMed  Google Scholar 

  8. Weigel C, Schmezer P, Plass C, Popanda O. Epigenetics in radiation-induced fibrosis. Oncogene. 2015;34(17):2145–55. https://doi.org/10.1038/onc.2014.145.

    Article  CAS  PubMed  Google Scholar 

  9. Yeboa DN, Evans SB. Contemporary breast radiotherapy and cardiac toxicity. Semin Radiat Oncol. 2016;26(1):71–8. https://doi.org/10.1016/j.semradonc.2015.09.003.

    Article  PubMed  Google Scholar 

  10. Saiki H, Petersen IA, Scott CG, Bailey KR, Dunlay SM, Finley RR, et al. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation. 2017;135(15):1388–96. https://doi.org/10.1161/CIRCULATIONAHA.116.025434. This case-control study demonstrated the association between heart dose and risk of developing heart failure, particulalry HFpEF, in breast cancer patients receiving radiotherapy. Importantly, it also demonstrated low rates of ischemic events prior to heart failure development, suggesting underlying pathogenesis of HF was largely independent of ischemia.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li B, Wang Z, He Y, Chen T, Zhang Y, Yuan X, et al. Adropin improves radiation-induced myocardial injury via VEGFR2/PI3K/Akt pathway. Oxid Med Cell Longev. 2022;2022:8230214. https://doi.org/10.1155/2022/8230214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schultz-Hector S, Bohm M, Blochel A, Dominiak P, Erdmann E, Muller-Schauenburg W, et al. Radiation-induced heart disease: morphology, changes in catecholamine synthesis and content, beta-adrenoceptor density, and hemodynamic function in an experimental model. Radiat Res. 1992;129(3):281–9.

    Article  CAS  PubMed  Google Scholar 

  13. Heidenreich PA, Hancock SL, Lee BK, Mariscal CS, Schnittger I. Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol. 2003;42(4):743–9. https://doi.org/10.1016/s0735-1097(03)00759-9.

    Article  PubMed  Google Scholar 

  14. Erven K, Jurcut R, Weltens C, Giusca S, Ector J, Wildiers H, et al. Acute radiation effects on cardiac function detected by strain rate imaging in breast cancer patients. Int J Radiat Oncol Biol Phys. 2011;79(5):1444–51. https://doi.org/10.1016/j.ijrobp.2010.01.004.

    Article  PubMed  Google Scholar 

  15. Murbraech K, Holte E, Broch K, Smeland KB, Holte H, Rosner A, et al. Impaired right ventricular function in long-term lymphoma survivors. J Am Soc Echocardiogr. 2016;29(6):528–36. https://doi.org/10.1016/j.echo.2016.02.014.

    Article  PubMed  Google Scholar 

  16. Greenlee H, Iribarren C, Rana JS, Cheng R, Nguyen-Huynh M, Rillamas-Sun E, et al. Risk of cardiovascular disease in women with and without breast cancer: the Pathways Heart Study. J Clin Oncol. 2022;40(15):1647–58. https://doi.org/10.1200/JCO.21.01736.

    Article  PubMed  Google Scholar 

  17. Wu SP, Tam M, Vega RM, Perez CA, Gerber NK. Effect of breast irradiation on cardiac disease in women enrolled in BCIRG-001 at 10-year follow-up. Int J Radiat Oncol Biol Phys. 2017;99(3):541–8. https://doi.org/10.1016/j.ijrobp.2017.06.018.

    Article  PubMed  Google Scholar 

  18. Taylor C, Correa C, Duane FK, Aznar MC, Anderson SJ, Bergh J, et al. Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol. 2017;35(15):1641–9. https://doi.org/10.1200/JCO.2016.72.0722.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Atkins KM, Rawal B, Chaunzwa TL, Lamba N, Bitterman DS, Williams CL, et al. Cardiac radiation dose, cardiac disease, and mortality in patients with lung cancer. J Am Coll Cardiol. 2019;73(23):2976–87. https://doi.org/10.1016/j.jacc.2019.03.500.

    Article  PubMed  Google Scholar 

  20. Yegya-Raman N, Wang K, Kim S, Reyhan M, Deek MP, Sayan M, et al. Dosimetric predictors of symptomatic cardiac events after conventional-dose chemoradiation therapy for inoperable NSCLC. J Thorac Oncol. 2018;13(10):1508–18. https://doi.org/10.1016/j.jtho.2018.05.028.

    Article  PubMed  Google Scholar 

  21. Reshko LB, Kalman NS, Hugo GD, Weiss E. Cardiac radiation dose distribution, cardiac events and mortality in early-stage lung cancer treated with stereotactic body radiation therapy (SBRT). J Thorac Dis. 2018;10(4):2346–56. https://doi.org/10.21037/jtd.2018.04.42.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang K, Eblan MJ, Deal AM, Lipner M, Zagar TM, Wang Y, et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol. 2017;35(13):1387–94. https://doi.org/10.1200/JCO.2016.70.0229.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dess RT, Sun Y, Matuszak MM, Sun G, Soni PD, Bazzi L, et al. Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J Clin Oncol. 2017;35(13):1395–402. https://doi.org/10.1200/JCO.2016.71.6142.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tembhekar AR, Wright CL, Daly ME. Cardiac dose and survival after stereotactic body radiotherapy for early-stage non-small-cell lung cancer. Clin Lung Cancer. 2017;18(3):293–8. https://doi.org/10.1016/j.cllc.2016.12.007.

    Article  PubMed  Google Scholar 

  25. Garant A, Spears G, Routman D, Whitaker T, Liao Z, Harmsen W, et al. A multi-institutional analysis of radiation dosimetric predictors of toxicity after trimodality therapy for esophageal cancer. Pract Radiat Oncol. 2021;11(4):e415–25. https://doi.org/10.1016/j.prro.2021.01.004.

    Article  PubMed  Google Scholar 

  26. Beukema JC, Kawaguchi Y, Sijtsema NM, Zhai TT, Langendijk JA, van Dijk LV, et al. Can we safely reduce the radiation dose to the heart while compromising the dose to the lungs in oesophageal cancer patients? Radiother Oncol. 2020;149:222–7. https://doi.org/10.1016/j.radonc.2020.05.033.

    Article  PubMed  Google Scholar 

  27. Wang X, Palaskas NL, Yusuf SW, Abe JI, Lopez-Mattei J, Banchs J, et al. Incidence and onset of severe cardiac events after radiotherapy for esophageal cancer. J Thorac Oncol. 2020;15(10):1682–90. https://doi.org/10.1016/j.jtho.2020.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Witt JS, Jagodinsky JC, Liu Y, Yadav P, Kuczmarska-Haas A, Yu M, et al. Cardiac toxicity in operable esophageal cancer patients treated with or without chemoradiation. Am J Clin Oncol. 2019;42(8):662–7. https://doi.org/10.1097/COC.0000000000000573.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhu HT, Ai DS, Tang HR, Badakhshi H, Fan JH, Deng JY, et al. Long-term results of paclitaxel plus cisplatin with concurrent radiotherapy for loco-regional esophageal squamous cell carcinoma. World J Gastroenterol. 2017;23(3):540–6. https://doi.org/10.3748/wjg.v23.i3.540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lester SC, Lin SH, Chuong M, Bhooshan N, Liao Z, Arnett AL, et al. A multi-institutional analysis of trimodality therapy for esophageal cancer in elderly patients. Int J Radiat Oncol Biol Phys. 2017;98(4):820–8. https://doi.org/10.1016/j.ijrobp.2017.02.021.

    Article  PubMed  Google Scholar 

  31. Tait LM, Meyer JE, McSpadden E, Cheng JD, Baciewicz FA, Meropol NJ, et al. Women at increased risk for cardiac toxicity following chemoradiation therapy for esophageal carcinoma. Pract Radiat Oncol. 2013;3(4):e149–55. https://doi.org/10.1016/j.prro.2013.02.001.

    Article  PubMed  Google Scholar 

  32. Cutter DJ, Ramroth J, Diez P, Buckle A, Ntentas G, Popova B, et al. Predicted risks of cardiovascular disease following chemotherapy and radiotherapy in the UK NCRI RAPID trial of positron emission tomography-directed therapy for early-stage Hodgkin lymphoma. J Clin Oncol. 2021;39(32):3591–601. https://doi.org/10.1200/JCO.21.00408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maraldo MV, Giusti F, Vogelius IR, Lundemann M, van der Kaaij MA, Ramadan S, et al. Cardiovascular disease after treatment for Hodgkin’s lymphoma: an analysis of nine collaborative EORTC-LYSA trials. Lancet Haematol. 2015;2(11):e492-502. https://doi.org/10.1016/S2352-3026(15)00153-2.

    Article  PubMed  Google Scholar 

  34. van Nimwegen FA, Schaapveld M, Janus CP, Krol AD, Petersen EJ, Raemaekers JM, et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern Med. 2015;175(6):1007–17. https://doi.org/10.1001/jamainternmed.2015.1180.

    Article  PubMed  Google Scholar 

  35. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98. https://doi.org/10.1056/NEJMoa1209825.

    Article  CAS  PubMed  Google Scholar 

  36. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303(11):1070–6. https://doi.org/10.1001/jama.2010.261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schneider BJ, Daly ME, Kennedy EB, Stiles BM. Stereotactic body radiotherapy for early-stage non-small-cell lung cancer: American Society of Clinical Oncology endorsement of the American Society for Radiation Oncology evidence-based guideline summary. J Oncol Pract. 2018;14(3):180–6. https://doi.org/10.1200/JOP.2017.028894.

    Article  PubMed  Google Scholar 

  38. Abel S, Hasan S, Horne ZD, Colonias A, Wegner RE. Stereotactic body radiation therapy in early-stage NSCLC: historical review, contemporary evidence and future implications. Lung Cancer Manag. 2019;8(1):LMT09. https://doi.org/10.2217/lmt-2018-0013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spigel DR, Faivre-Finn C, Gray JE, Vicente D, Planchard D, Paz-Ares L, et al. Five-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. J Clin Oncol. 2022;40(12):1301–11. https://doi.org/10.1200/JCO.21.01308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16(2):187–99. https://doi.org/10.1016/S1470-2045(14)71207-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chun SG, Hu C, Choy H, Komaki RU, Timmerman RD, Schild SE, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol. 2017;35(1):56–62. https://doi.org/10.1200/JCO.2016.69.1378.

    Article  PubMed  Google Scholar 

  42. Bradley JD, Hu C, Komaki RR, Masters GA, Blumenschein GR, Schild SE, et al. Long-term results of NRG oncology RTOG 0617: standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J Clin Oncol. 2020;38(7):706–14. https://doi.org/10.1200/JCO.19.01162.

    Article  CAS  PubMed  Google Scholar 

  43. Thor M, Deasy JO, Hu C, Gore E, Bar-Ad V, Robinson C, et al. Modeling the impact of cardiopulmonary irradiation on overall survival in NRG oncology trial RTOG 0617. Clin Cancer Res. 2020;26(17):4643–50. https://doi.org/10.1158/1078-0432.CCR-19-2627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366(22):2074–84. https://doi.org/10.1056/NEJMoa1112088.

    Article  PubMed  Google Scholar 

  45. Goodman KA, Ou FS, Hall NC, Bekaii-Saab T, Fruth B, Twohy E, et al. Randomized phase II study of PET response-adapted combined modality therapy for esophageal cancer: mature results of the CALGB 80803 (Alliance) trial. J Clin Oncol. 2021;39(25):2803–15. https://doi.org/10.1200/JCO.20.03611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sondergaard MMA, Nordsmark M, Nielsen KM, Poulsen SH. Cardiovascular burden and adverse events in patients with esophageal cancer treated with chemoradiation for curative intent. JACC CardioOncol. 2021;3(5):711–21. https://doi.org/10.1016/j.jaccao.2021.10.002.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang X, Palaskas NL, Hobbs BP, Abe JI, Nead KT, Yusuf SW, et al. The impact of radiation dose to heart substructures on major coronary events and patient survival after chemoradiation therapy for esophageal cancer. Cancers (Basel). 2022;14(5). https://doi.org/10.3390/cancers14051304.

  48. Poussin-Rosillo H, Nisce LZ, Lee BJ. Complications of total nodal irradiation of Hodgkin’s disease stages III and IV. Cancer. 1978;42(2):437–41. https://doi.org/10.1002/1097-0142(197808)42:2%3c437::aid-cncr2820420209%3e3.0.co;2-#.

    Article  CAS  PubMed  Google Scholar 

  49. Witkowska M, Majchrzak A, Smolewski P. The role of radiotherapy in Hodgkin’s lymphoma: what has been achieved during the last 50 years? Biomed Res Int. 2015;2015:485071. https://doi.org/10.1155/2015/485071.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mauch PM, Kalish LA, Kadin M, Coleman CN, Osteen R, Hellman S. Patterns of presentation of Hodgkin disease. Implications for etiology and pathogenesis Cancer. 1993;71(6):2062–71. https://doi.org/10.1002/1097-0142(19930315)71:6%3c2062::aid-cncr2820710622%3e3.0.co;2-0. This study quantified the estimated abolute increase in risk of CHF incidence and death from CHF in patients with lymphoma undergoing radiotherapy using modern techniques.

    Article  CAS  PubMed  Google Scholar 

  51. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63–75. https://doi.org/10.1007/s10557-016-6711-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Armstrong GT, Oeffinger KC, Chen Y, Kawashima T, Yasui Y, Leisenring W, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31(29):3673–80. https://doi.org/10.1200/JCO.2013.49.3205.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tsai HR, Gjesdal O, Wethal T, Haugaa KH, Fossa A, Fossa SD, et al. Left ventricular function assessed by two-dimensional speckle tracking echocardiography in long-term survivors of Hodgkin’s lymphoma treated by mediastinal radiotherapy with or without anthracycline therapy. Am J Cardiol. 2011;107(3):472–7. https://doi.org/10.1016/j.amjcard.2010.09.048.

    Article  PubMed  Google Scholar 

  54. Berardi R, Caramanti M, Savini A, Chiorrini S, Pierantoni C, Onofri A, et al. State of the art for cardiotoxicity due to chemotherapy and to targeted therapies: a literature review. Crit Rev Oncol Hematol. 2013;88(1):75–86. https://doi.org/10.1016/j.critrevonc.2013.02.007.

    Article  PubMed  Google Scholar 

  55. Salvatorelli E, Menna P, Cascegna S, Liberi G, Calafiore AM, Gianni L, et al. Paclitaxel and docetaxel stimulation of doxorubicinol formation in the human heart: implications for cardiotoxicity of doxorubicin-taxane chemotherapies. J Pharmacol Exp Ther. 2006;318(1):424–33. https://doi.org/10.1124/jpet.106.103846.

    Article  CAS  PubMed  Google Scholar 

  56. Onitilo AA, Engel JM, Stankowski RV. Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Ther Adv Drug Saf. 2014;5(4):154–66. https://doi.org/10.1177/2042098614529603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lenihan D, Suter T, Brammer M, Neate C, Ross G, Baselga J. Pooled analysis of cardiac safety in patients with cancer treated with pertuzumab. Ann Oncol. 2012;23(3):791–800. https://doi.org/10.1093/annonc/mdr294.

    Article  CAS  PubMed  Google Scholar 

  58. Alhussein MM, Mokbel A, Cosman T, Aghel N, Yang EH, Mukherjee SD, et al. Pertuzumab cardiotoxicity in patients with HER2-positive cancer: a systematic review and meta-analysis. CJC Open. 2021;3(11):1372–82. https://doi.org/10.1016/j.cjco.2021.06.019.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vaklavas C, Lenihan D, Kurzrock R, Tsimberidou AM. Anti-vascular endothelial growth factor therapies and cardiovascular toxicity: what are the important clinical markers to target? Oncologist. 2010;15(2):130–41. https://doi.org/10.1634/theoncologist.2009-0252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–68. https://doi.org/10.1038/s41577-020-0306-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Horn L, Mansfield AS, Szczesna A, Havel L, Krzakowski M, Hochmair MJ, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379(23):2220–9. https://doi.org/10.1056/NEJMoa1809064.

    Article  CAS  PubMed  Google Scholar 

  62. Twomey JD, Zhang B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 2021;23(2):39. https://doi.org/10.1208/s12248-021-00574-0.

    Article  PubMed  Google Scholar 

  63. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919–29. https://doi.org/10.1056/NEJMoa1709937.

    Article  CAS  PubMed  Google Scholar 

  64. Kelly RJ, Ajani JA, Kuzdzal J, Zander T, Van Cutsem E, Piessen G, et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N Engl J Med. 2021;384(13):1191–203. https://doi.org/10.1056/NEJMoa2032125.

    Article  CAS  PubMed  Google Scholar 

  65. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55. https://doi.org/10.1056/NEJMoa1609214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lyon AR, Yousaf N, Battisti NML, Moslehi J, Larkin J. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol. 2018;19(9):e447–58. https://doi.org/10.1016/S1470-2045(18)30457-1.

    Article  CAS  PubMed  Google Scholar 

  67. Konala VM, Adapa S, Aronow WS. Immune checkpoint inhibitors-related cardiotoxicity. Am J Ther. 2020;27(6):e591–8. https://doi.org/10.1097/MJT.0000000000000988.

    Article  PubMed  Google Scholar 

  68. Hu YB, Zhang Q, Li HJ, Michot JM, Liu HB, Zhan P, et al. Evaluation of rare but severe immune related adverse effects in PD-1 and PD-L1 inhibitors in non-small cell lung cancer: a meta-analysis. Transl Lung Cancer Res. 2017;6(Suppl 1):S8–20. https://doi.org/10.21037/tlcr.2017.12.10.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pareek N, Cevallos J, Moliner P, Shah M, Tan LL, Chambers V, et al. Activity and outcomes of a cardio-oncology service in the United Kingdom-a five-year experience. Eur J Heart Fail. 2018;20(12):1721–31. https://doi.org/10.1002/ejhf.1292.

    Article  PubMed  Google Scholar 

  70. •. Lyon AR, Lopez-Fernandez T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J Cardiovasc Imaging. 2022;23(10):e333-e465. https://doi.org/10.1093/ehjci/jeac106. This publication, the first cardio-oncology guideline released by the ESC, is a comprehensive overview of recommendations regarding the diagnosis, treatment, prevention, and management of cancer therapy-related cardiovascular disease.

  71. Lancellotti P, Nkomo VT, Badano LP, Bergler-Klein J, Bogaert J, Davin L, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2013;26(9):1013–32. https://doi.org/10.1016/j.echo.2013.07.005.

    Article  PubMed  Google Scholar 

  72. Group CsO: long-term follow-up guidelines for survivors of childhood, adolescent, and young adult cancers, Version 5.0. 2018. http://survivorshipguidelines.org/pdf/2018/COG_LTFU_Guidelines_v5.pdf. Accessed 8/15/2022.

  73. Celutkiene J, Pudil R, Lopez-Fernandez T, Grapsa J, Nihoyannopoulos P, Bergler-Klein J, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020;22(9):1504–24. https://doi.org/10.1002/ejhf.1957.

    Article  CAS  PubMed  Google Scholar 

  74. Keramida K, Farmakis D, Lopez Fernandez T, Lancellotti P. Focused echocardiography in cardio-oncology. Echocardiography. 2020;37(8):1149–58. https://doi.org/10.1111/echo.14800.

    Article  PubMed  Google Scholar 

  75. Altena R, Perik PJ, van Veldhuisen DJ, de Vries EG, Gietema JA. Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol. 2009;10(4):391–9. https://doi.org/10.1016/S1470-2045(09)70042-7.

    Article  CAS  PubMed  Google Scholar 

  76. Xiao H, Wang X, Li S, Liu Y, Cui Y, Deng X. Advances in biomarkers for detecting early cancer treatment-related cardiac dysfunction. Front Cardiovasc Med. 2021;8:753313. https://doi.org/10.3389/fcvm.2021.753313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Machann W, Beer M, Breunig M, Stork S, Angermann C, Seufert I, et al. Cardiac magnetic resonance imaging findings in 20-year survivors of mediastinal radiotherapy for Hodgkin’s disease. Int J Radiat Oncol Biol Phys. 2011;79(4):1117–23. https://doi.org/10.1016/j.ijrobp.2009.12.054.

    Article  PubMed  Google Scholar 

  78. Ricco A, Slade A, Canada JM, Grizzard J, Dana F, Rezai Gharai L, et al. Cardiac MRI utilizing late gadolinium enhancement (LGE) and T1 mapping in the detection of radiation induced heart disease. Cardiooncology. 2020;6:6. https://doi.org/10.1186/s40959-020-00061-z.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ma CX, Zhao XK, Li YD. New therapeutic insights into radiation-induced myocardial fibrosis. Ther Adv Chronic Dis. 2019;10:2040622319868383. https://doi.org/10.1177/2040622319868383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sayed A, Abdelfattah OM, Munir M, Shazly O, Awad AK, Ghaith HS, et al. Long-term effectiveness of empiric cardio-protection in patients receiving cardiotoxic chemotherapies: a systematic review & bayesian network meta-analysis. Eur J Cancer. 2022;169:82–92. https://doi.org/10.1016/j.ejca.2022.03.024.

    Article  CAS  PubMed  Google Scholar 

  81. Prasad RN, Miller ED, Addison D, Bazan JG. Lack of cardiotoxicity endpoints in prospective trials involving chest radiation therapy: a review of registered, latter-phase studies. Front Oncol. 2022;12:808531. https://doi.org/10.3389/fonc.2022.808531.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Prasad RN, McIntyre M, Guha A, Carter RR, Yildiz VO, Paskett E, et al. Cardiovascular event reporting in modern cancer radiation therapy trials. Adv Radiat Oncol. 2022;7(2):100888. https://doi.org/10.1016/j.adro.2021.100888.

    Article  PubMed  Google Scholar 

  83. Welch TD. Constrictive pericarditis: diagnosis, management and clinical outcomes. Heart. 2018;104(9):725–31. https://doi.org/10.1136/heartjnl-2017-311683.

    Article  PubMed  Google Scholar 

  84. Bicer M, Ozdemir B, Kan I, Yuksel A, Tok M, Senkaya I. Long-term outcomes of pericardiectomy for constrictive pericarditis. J Cardiothorac Surg. 2015;10:177. https://doi.org/10.1186/s13019-015-0385-8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bijl JM, Roos MM, van Leeuwen-Segarceanu EM, Vos JM, Bos WW, Biesma DH, et al. Assessment of valvular disorders in survivors of Hodgkin’s lymphoma treated by mediastinal radiotherapy +/- chemotherapy. Am J Cardiol. 2016;117(4):691–6. https://doi.org/10.1016/j.amjcard.2015.11.027.

    Article  PubMed  Google Scholar 

  86. Zhang D, Guo W, Al-Hijji MA, El Sabbagh A, Lewis BR, Greason K, et al. Outcomes of patients with severe symptomatic aortic valve stenosis after chest radiation: transcatheter versus surgical aortic valve replacement. J Am Heart Assoc. 2019;8(10):e012110. https://doi.org/10.1161/JAHA.119.012110.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Witberg G, Codner P, Landes U, Barbanti M, Valvo R, De Backer O, et al. Transcatheter treatment of residual significant mitral regurgitation following TAVR: a multicenter registry. JACC Cardiovasc Interv. 2020;13(23):2782–91. https://doi.org/10.1016/j.jcin.2020.07.014.

    Article  PubMed  Google Scholar 

  88. Handa N, McGregor CG, Danielson GK, Orszulak TA, Mullany CJ, Daly RC, et al. Coronary artery bypass grafting in patients with previous mediastinal radiation therapy. J Thorac Cardiovasc Surg. 1999;117(6):1136–42. https://doi.org/10.1016/s0022-5223(99)70250-3.

    Article  CAS  PubMed  Google Scholar 

  89. Saxena P, Joyce LD, Daly RC, Kushwaha SS, Schirger JA, Rosedahl J, et al. Cardiac transplantation for radiation-induced cardiomyopathy: the Mayo Clinic experience. Ann Thorac Surg. 2014;98(6):2115–21. https://doi.org/10.1016/j.athoracsur.2014.06.056.

    Article  PubMed  Google Scholar 

  90. Al-Kindi SG, Oliveira GH. Heart transplantation outcomes in radiation-induced restrictive cardiomyopathy. J Card Fail. 2016;22(6):475–8. https://doi.org/10.1016/j.cardfail.2016.03.014.

    Article  PubMed  Google Scholar 

  91. Lin SH, Wang L, Myles B, Thall PF, Hofstetter WL, Swisher SG, et al. Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs intensity-modulated radiotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys. 2012;84(5):1078–85. https://doi.org/10.1016/j.ijrobp.2012.02.015.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Koeck J, Abo-Madyan Y, Lohr F, Stieler F, Kriz J, Mueller RP, et al. Radiotherapy for early mediastinal Hodgkin lymphoma according to the German Hodgkin Study Group (GHSG): the roles of intensity-modulated radiotherapy and involved-node radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83(1):268–76. https://doi.org/10.1016/j.ijrobp.2011.05.054.

    Article  PubMed  Google Scholar 

  93. Jin GH, Chen LX, Deng XW, Liu XW, Huang Y, Huang XB. A comparative dosimetric study for treating left-sided breast cancer for small breast size using five different radiotherapy techniques: conventional tangential field, filed-in-filed, tangential-IMRT, multi-beam IMRT and VMAT. Radiat Oncol. 2013;8:89. https://doi.org/10.1186/1748-717X-8-89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Boyle J, Ackerson B, Gu L, Kelsey CR. Dosimetric advantages of intensity modulated radiation therapy in locally advanced lung cancer. Adv Radiat Oncol. 2017;2(1):6–11. https://doi.org/10.1016/j.adro.2016.12.006.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lin SH, Hobbs BP, Verma V, Tidwell RS, Smith GL, Lei X, et al. Randomized phase IIB trial of proton beam therapy versus intensity-modulated radiation therapy for locally advanced esophageal cancer. J Clin Oncol. 2020;38(14):1569–79. https://doi.org/10.1200/JCO.19.02503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lin S. Comparing proton therapy to photon radiation therapy for esophageal cancer. n.d. https://ClinicalTrials.gov/show/NCT03801876.

  97. Bradley JA, Mendenhall NP. Novel radiotherapy techniques for breast cancer. Annu Rev Med. 2018;69:277–88. https://doi.org/10.1146/annurev-med-042716-103422.

    Article  CAS  PubMed  Google Scholar 

  98. Hoppe BS, Flampouri S, Su Z, Morris CG, Latif N, Dang NH, et al. Consolidative involved-node proton therapy for Stage IA-IIIB mediastinal Hodgkin lymphoma: preliminary dosimetric outcomes from a Phase II study. Int J Radiat Oncol Biol Phys. 2012;83(1):260–7. https://doi.org/10.1016/j.ijrobp.2011.06.1959.

    Article  PubMed  Google Scholar 

  99. Hoppe BS, Flampouri S, Su Z, Latif N, Dang NH, Lynch J, et al. Effective dose reduction to cardiac structures using protons compared with 3DCRT and IMRT in mediastinal Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2012;84(2):449–55. https://doi.org/10.1016/j.ijrobp.2011.12.034.

    Article  PubMed  Google Scholar 

  100. Rochet N, Drake JI, Harrington K, Wolfgang JA, Napolitano B, Sadek BT, et al. Deep inspiration breath-hold technique in left-sided breast cancer radiation therapy: evaluating cardiac contact distance as a predictor of cardiac exposure for patient selection. Pract Radiat Oncol. 2015;5(3):e127–34. https://doi.org/10.1016/j.prro.2014.08.003.

    Article  PubMed  Google Scholar 

  101. Hjelstuen MH, Mjaaland I, Vikstrom J, Dybvik KI. Radiation during deep inspiration allows loco-regional treatment of left breast and axillary-, supraclavicular- and internal mammary lymph nodes without compromising target coverage or dose restrictions to organs at risk. Acta Oncol. 2012;51(3):333–44. https://doi.org/10.3109/0284186X.2011.618510.

    Article  PubMed  Google Scholar 

  102. Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Kahya YE, Gamsiz H, et al. Dosimetric evaluation of critical organs at risk in mastectomized left-sided breast cancer radiotherapy using breath-hold technique. Tumori. 2013;99(1):76–82. https://doi.org/10.1700/1248.13792.

    Article  CAS  PubMed  Google Scholar 

  103. Lymberis SC, deWyngaert JK, Parhar P, Chhabra AM, Fenton-Kerimian M, Chang J, et al. Prospective assessment of optimal individual position (prone versus supine) for breast radiotherapy: volumetric and dosimetric correlations in 100 patients. Int J Radiat Oncol Biol Phys. 2012;84(4):902–9. https://doi.org/10.1016/j.ijrobp.2012.01.040.

    Article  PubMed  Google Scholar 

  104. Wurschmidt F, Stoltenberg S, Kretschmer M, Petersen C. Incidental dose to coronary arteries is higher in prone than in supine whole breast irradiation. A dosimetric comparison in adjuvant radiotherapy of early stage breast cancer. Strahlenther Onkol. 2014;190(6):563–8. https://doi.org/10.1007/s00066-014-0606-4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their families treated at The Ohio State University Comprehensive Cancer Center.

Funding

This work was supported, in part, by National Cancer Institutes (NCI) grant P30 CA016058, and by K23-HL155890 (DA); and by a Robert Wood Johnson Foundation (Harold Amos)-American Heart Association Program grant (DA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Miller.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritter, A., Quartermaine, C., Pierre-Charles, J. et al. Cardiotoxicity of Anti-Cancer Radiation Therapy: a Focus on Heart Failure. Curr Heart Fail Rep 20, 44–55 (2023). https://doi.org/10.1007/s11897-023-00587-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-023-00587-0

Keywords

Navigation