Skip to main content
Log in

Mechanisms of ventricular arrhythmias in heart failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Congestive heart failure continues to be a leading cause of mortality and morbidity worldwide. In approximately 50% of these patients, the mode of death is sudden. Ventricular tachycardia and fibrillation represent the majority of arrhythmias; the mechanisms responsible are heterogeneous and complex. Myocardial scar, a potent environment for reentry, is likely to contribute to many of the ventricular arrhythmias in ischemic heart failure. Altered calcium handling and changes in potassium currents may contribute to the increase in early and delayed afterdepolarizations seen in the failing heart. In addition, compensatory mechanisms may become deleterious and potentially arrhythmogenic via a variety of mechanisms. This article provides a general overview of the mechanisms thought to be responsible for ventricular arrhythmias in chronic heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Bonneux L, Barendregt JJ, Meeter K, et al.: Estimating clinical morbidity due to ischemic heart disease and congestive heart failure: The future rise of heart failure. Am J Public Health 1994, 84:20–28.

    Article  PubMed  CAS  Google Scholar 

  2. Packer M: Sudden unexpected death in patients with congestive heart failure. Circulation 1985, 72:681–685.

    PubMed  CAS  Google Scholar 

  3. Massie BM, Shah NB: Evolving trends in the epidemiologic factors of heart failure: rationale for preventative strategies and comprehensive disease management. Am Heart J 1997, 133:703–712.

    Article  PubMed  CAS  Google Scholar 

  4. Krishnan S, Schuger CD, Goldstein S: Sudden death in heart failure: underlying electrophysiologic mechanisms [review]. Heart Fail Rev 2002, 7:255–260.

    Article  PubMed  Google Scholar 

  5. Stevenson WG, Stevenson LW, Middlekauff HR, et al.: Sudden death prevention in patients with advanced ventricular dysfunction. Circulation 1993, 88:2953–2959.

    PubMed  CAS  Google Scholar 

  6. Moss AJ, Hall J, Cannom DS, et al.: Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med 1996, 335:1933–1940.

    Article  PubMed  CAS  Google Scholar 

  7. Buxton AE, Lee KL, Fisher JD, et al., The Multicenter Unsustained Tachycardia Trial Investigators: A randomized study of the prevention of sudden death in patients with coronary artery disease. N Engl J Med 1999, 341:1882–1890.

    Article  PubMed  CAS  Google Scholar 

  8. Zypes DP, Wyse DG, Freidman PL, et al.: A comparison of antiarrhythmic drug therapy with implantable defibrillators in patients resuscitated from near fatal ventricular arrhythmias. N Engl J Med 1997, 337:1576–1583.

    Article  Google Scholar 

  9. Moss AJ, Zareba W, Hall WJ, et al.: Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002, 346:877–883.

    Article  PubMed  Google Scholar 

  10. Bardy GH, Lee KL, Mark DB, et al.: Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005, 352:225–237. This paper redefines the population of patients who potentially benefit from primary prevention of sudden cardiac death with an implantable defibrillator.

    Article  PubMed  CAS  Google Scholar 

  11. Bristow MR, Saxon LA, Boehmer J, et al.: Cardiac resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004, 350:2140–2150. This paper provides insight into the benefit of cardiac resynchronization therapy for morbidity and the need for a defibrillator to significantly influence mortality.

    Article  PubMed  CAS  Google Scholar 

  12. Pogwizd SM, Hoyt RH, Saffitz JE, et al.: Reentrant and focal mechanisms underlying ventricular tachycardia in the human heart. Circulation 1992, 86:1872–1887.

    PubMed  CAS  Google Scholar 

  13. de Bakker JM, Van Capelle FJ, Janse MJ, et al.: Myocardial infarction: slow conduction in the infarcted human heart: "zigzag" course of activation. Circulation 1993, 88:915–926.

    PubMed  Google Scholar 

  14. Gardner PI, Ursell PC, Fenoglio JJ, et al.: Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation 1985, 72:596–611.

    PubMed  CAS  Google Scholar 

  15. Roberts WC, Seigel RJ, McManus BM: Idiopathic dilated cardiomyopathy: analysis of 152 necropsy patients. Am J Cardiol 1987, 60:1304–1355.

    Google Scholar 

  16. de Bakker JM, Van Capelle FJ, Janse MJ, et al.: Fractionated electrograms in dilated cardiomyopathy: origin and relation to abnormal conduction. J Am Coll Cardiol 1996, 27:1071–1078.

    Article  PubMed  Google Scholar 

  17. Peters NS, Green CR, Severs NJ: Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation 1993, 88:864–875.

    PubMed  CAS  Google Scholar 

  18. Pye MP, Cobbe SM: Arrhythmogenesis in experimental models of heart failure: the role of increased load. Cardiovasc Res 1996, 32:248–257.

    Article  PubMed  CAS  Google Scholar 

  19. Franz MR, Cima R, Wang D, et al.: Electrophysiologic effect of myocardial stretch and mechanical determinants of stretchactivated arrhythmias. Circulation 1992, 86:968–978.

    PubMed  CAS  Google Scholar 

  20. Zabel M, Koller B, Sachs F, Franz M: Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implication for stretch-activated ion channels. Cardiovasc Res 1996, 32:120–130.

    Article  PubMed  CAS  Google Scholar 

  21. Wang Z, Taylor KL, Denney WD, et al.: Initiation of ventricular extrasystoles by myocardial stretch in chronically dilated and failing canine left ventricle. Circulation 1994, 90:2022–2031.

    PubMed  CAS  Google Scholar 

  22. Braunwald E, Zipes DP, Libby P: Heart Disease: A Textbook of Cardiovascular Medicine, edn 6. Philadelphia, PA: WB Saunders Co.; 2001.

    Google Scholar 

  23. Zipes DP, Jalife J: Cardiac Electrophysiology: From Cell to Bedside, edn 4. Philadelphia, PA: Saunders Company; 2004. This is a central text describing the fundamental basic physiology essential to the understanding and practice of electrophysiology.

    Google Scholar 

  24. Josephson ME: Clinical Cardiac Electrophysiology: Techniques and Interpretations, edn 3. Philadelphia, PA: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  25. Bril A, Forest M, Gout B: Ischemia and reperfusion-induced arrhythmias in rabbits with chronic heart failure. Am J Physiol 1991, 261:H301-H307.

    PubMed  CAS  Google Scholar 

  26. Janse MJ, Vermeulen JT, Opthof T, et al.: Arrhythmogenesis in heart failure. J Cardiovasc Electrophysiol 2001, 12:496–499.

    Article  PubMed  CAS  Google Scholar 

  27. Smith WT, Fleet WF, Johnson TA, et al.: The 1b phase of ventricular arrhythmias in ischemic in situ porcine heart is related to changes in cell-to-cell coupling. Circulation 1995, 92:3051–3060.

    PubMed  Google Scholar 

  28. Antzelevitch C, Sicouri S, Litosky S, et al.: Heterogeneity within the ventricular wall: electrophysiology and pharmacology of epicardial, endocardial and M cells. Circ Res 1991, 69:1427–1449.

    PubMed  CAS  Google Scholar 

  29. MERIT-HF Study Group: Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomized Interventional Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999, 353:2001–2007.

    Article  Google Scholar 

  30. Schwartz PJ, La Rovere MT, Vanoli E: Autonomic nervous system and sudden cardiac death: experimental basis and clinical observations for post myocardial risk stratification. Circulation 1992, 85(1 Suppl):I77-I91.

    PubMed  CAS  Google Scholar 

  31. Meredith IT, Eisenhofer G, Lambert EM, et al.: Cardiac sympathetic nervous activity in congestive heart failure: evidence for increased neuronal norepinephrine release. Circulation 1993, 88:136–145.

    PubMed  CAS  Google Scholar 

  32. Meredith IT, Broughton A, Jennings GL, et al.: Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. N Engl J Med 1991, 325:618–624.

    Article  PubMed  CAS  Google Scholar 

  33. Cao J, Chen LS, KenKnight B, et al.: Nerve sprouting and sudden cardiac death. Circ Res 2000, 86:816–821.

    PubMed  CAS  Google Scholar 

  34. Cao J, Fishbein MC, Han JB, et al.: Relationship between regional cardiac hyperinnervation and ventricular arrhythmias. Circulation 2000, 101:1960–1969.

    PubMed  CAS  Google Scholar 

  35. Gettes LS: Electrolyte abnormalities underlying lethal ventricular arrhythmias. Circulation 1992, 85:70–76.

    Google Scholar 

  36. Echt DS, Liebson PR, Mitchell LB, et al.: Morbidity and mortality in patients receiving encainide, flecainide or placebo. The Cardiac Arrhythmia Suppression Trial. N Eng J Med 1991, 324:781–788.

    Article  CAS  Google Scholar 

  37. Beuckelmann DJ, Nabauer M, Erdmann E, et al.: Alterations of K currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 1993, 73:379–385.

    PubMed  CAS  Google Scholar 

  38. Maltsev VA, Sabbah HN, Higgins R, et al.: Novel, ultra-slow inactivating sodium current in human ventricular cardiomyocytes. Circulation 1998, 98:2545–2552.

    PubMed  CAS  Google Scholar 

  39. Volders P, Vos M, Sipido K, et al.: Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovascular Research 2000, 40:376–392 This text provides a good overview of the mechanisms surrounding early afterdepolarizations and their relationship to torsade de pointes.

    Article  Google Scholar 

  40. Pogwizd SM, Schlotthauer K, Li L, et al.: Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current and residual B-adrenergic responsiveness. Circ Res 2000, 88:1159–1167. This text helps provide an insight into the mechanisms of the proarrhythmic state of decompensated heart failure.

    Google Scholar 

  41. Tomaselli GF, Marban E: Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 1999, 42:270–283.

    Article  PubMed  CAS  Google Scholar 

  42. Verkerk AO, Veldkamp MW, Baartscheer A, et al.: Ionic mechanism of delayed afterdepolarizations in ventricular cells isolated from human end-stage failing hearts. Circulation 2001, 104:2728–2733.

    PubMed  CAS  Google Scholar 

  43. Bers DM, Eisner DA, Valdivia HH: Sarcoplasmic reticulum Ca2+ and heart failure roles of diastolic leak and Ca2+ transport. Circ Res 2003, 93:487–490.

    Article  PubMed  CAS  Google Scholar 

  44. Weber CR, Piacentino V3rd, Houser SR, et al.: Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation 2003, 108:2224–2229.

    Article  PubMed  CAS  Google Scholar 

  45. Kaab S, Dixon J, Duc J, et al.: Molecular basis of transient outward potassium current downregulation in human heart failure: A decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 1998, 98:1383–1393.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebinger, M.W., Krishnan, S. & Schuger, C.D. Mechanisms of ventricular arrhythmias in heart failure. Curr Heart Fail Rep 2, 111–117 (2005). https://doi.org/10.1007/s11897-005-0018-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-005-0018-y

Keywords

Navigation