Skip to main content

Advertisement

Log in

New and Emerging Biomarkers in Cardiovascular Disease

  • Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is the most common cause of death and disability worldwide. Therefore, great importance has been placed on the discovery of novel risk factors and metabolic pathways relevant in the prevention and management of CVD. Such research is ongoing and may continue to lead to better risk stratification of individuals and/or the development of new intervention targets and treatment options. This review highlights emerging biomarkers related to lipid metabolism, glycemia, inflammation, and cardiac damage, some of which show promising associations with CVD risk and provide further understanding of the underlying pathophysiology. However, their measurement methodology and assays will require validation and standardization, and it will take time to accumulate evidence of their role in CVD in various population settings in order to fully assess their clinical utility. Several of the novel biomarkers represent intriguing, potentially game-changing targets for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Murray CJ, Atkinson C, Bhalla K, et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310:591–608.

    Article  CAS  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–e292.

    Article  PubMed  Google Scholar 

  3. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–71.

    Article  PubMed Central  Google Scholar 

  4. Goff Jr DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S49–73.

    Article  PubMed  Google Scholar 

  5. NIH. Third report of the expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). In: National Heart L, and Blood Institute, editor, 2004.

  6. Ptolemy AS, Rifai N. What is a biomarker? Research investments and lack of clinical integration necessitate a review of biomarker terminology and validation schema. Scand J Clin Lab Investig Suppl. 2010;242:6–14.

    Article  Google Scholar 

  7. Anderson NL, Ptolemy AS, Rifai N. The riddle of protein diagnostics: future bleak or bright? Clin Chem. 2013;59:194–7.

    Article  CAS  PubMed  Google Scholar 

  8. Hlatky MA, Greenland P, Arnett DK, et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119:2408–16.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977;62:707–14.

    Article  CAS  PubMed  Google Scholar 

  10. McQueen MJ, Hawken S, Wang X, et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study. Lancet. 2008;372:224–33.

    Article  CAS  PubMed  Google Scholar 

  11. Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000.

    Article  PubMed  Google Scholar 

  12. Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007;356:1304–16.

    Article  CAS  PubMed  Google Scholar 

  13. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    Article  CAS  PubMed  Google Scholar 

  14. Briel M, Ferreira-Gonzalez I, You JJ, et al. Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ. 2009;338:b92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet. 2012;380:572–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rosenson RS, Brewer Jr HB, Ansell B, et al. Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges. Circulation. 2013;128:1256–67.

    PubMed  Google Scholar 

  17. Movva R, Rader DJ. Laboratory assessment of HDL heterogeneity and function. Clin Chem. 2008;54:788–800.

    Article  CAS  PubMed  Google Scholar 

  18. Anuurad E, Boffa MB, Koschinsky ML, Berglund L. Lipoprotein(a): a unique risk factor for cardiovascular disease. Clin Lab Med. 2006;26:751–72.

    Article  PubMed  Google Scholar 

  19. Hobbs HH, White AL. Lipoprotein(a): intrigues and insights. Curr Opin Lipidol. 1999;10:225–36.

    Article  CAS  PubMed  Google Scholar 

  20. Marcovina SM, Koschinsky ML. Lipoprotein(a) as a risk factor for coronary artery disease. Am J Cardiol. 1998;82:57U–66U. discussion 86U.

    Article  CAS  PubMed  Google Scholar 

  21. Poon M, Zhang X, Dunsky KG, Taubman MB, Harpel PC. Apolipoprotein(a) induces monocyte chemotactic activity in human vascular endothelial cells. Circulation. 1997;96:2514–9.

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen LB, Gronholdt ML, Schroeder TV, Stender S, Nordestgaard BG. In vivo transfer of lipoprotein(a) into human atherosclerotic carotid arterial intima. Arterioscler Thromb Vasc Biol. 1997;17:905–11.

    Article  CAS  PubMed  Google Scholar 

  23. Helgadottir A, Gretarsdottir S, Thorleifsson G, et al. Apolipoprotein(a) genetic sequence variants associated with systemic atherosclerosis and coronary atherosclerotic burden but not with venous thromboembolism. J Am Coll Cardiol. 2012;60:722–9.

    Article  CAS  PubMed  Google Scholar 

  24. Nielsen LB, Juul K, Nordestgaard BG. Increased degradation of lipoprotein(a) in atherosclerotic compared with nonlesioned aortic intima-inner media of rabbits: in vivo evidence that lipoprotein(a) may contribute to foam cell formation. Arterioscler Thromb Vasc Biol. 1998;18:641–9.

    Article  CAS  PubMed  Google Scholar 

  25. Danik JS, Buring JE, Chasman DI, Zee RY, Ridker PM, Glynn RJ. Lipoprotein(a), polymorphisms in the LPA gene, and incident venous thromboembolism among 21483 women. J Thromb Haemost. 2013;11:205–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Erqou S, Kaptoge S, Perry PL, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302:412–23.

    Article  CAS  PubMed  Google Scholar 

  27. Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34:3478a–90a.

    Article  CAS  Google Scholar 

  28. Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G, Hobbs HH. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90:52–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mooser V, Scheer D, Marcovina SM, et al. The Apo(a) gene is the major determinant of variation in plasma Lp(a) levels in African Americans. Am J Hum Genet. 1997;61:402–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tregouet DA, Konig IR, Erdmann J, et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41:283–5.

    Article  CAS  PubMed  Google Scholar 

  31. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301:2331–9.

    Article  CAS  PubMed  Google Scholar 

  32. Holmer SR, Hengstenberg C, Kraft HG, et al. Association of polymorphisms of the apolipoprotein(a) gene with lipoprotein(a) levels and myocardial infarction. Circulation. 2003;107:696–701.

    Article  PubMed  Google Scholar 

  33. Takagi H, Umemoto T. Atorvastatin decreases lipoprotein(a): a meta-analysis of randomized trials. Int J Cardiol. 2012;154:183–6.

    Article  PubMed  Google Scholar 

  34. Insull Jr W, McGovern ME, Schrott H, et al. Efficacy of extended-release niacin with lovastatin for hypercholesterolemia: assessing all reasonable doses with innovative surface graph analysis. Arch Intern Med. 2004;164:1121–7.

    Article  CAS  PubMed  Google Scholar 

  35. Maher VM, Brown BG, Marcovina SM, Hillger LA, Zhao XQ, Albers JJ. Effects of lowering elevated LDL cholesterol on the cardiovascular risk of lipoprotein(a). JAMA. 1995;274:1771–4.

    Article  CAS  PubMed  Google Scholar 

  36. Berg K, Dahlen G, Christophersen B, Cook T, Kjekshus J, Pedersen T. Lp(a) lipoprotein level predicts survival and major coronary events in the Scandinavian Simvastatin Survival Study. Clin Genet. 1997;52:254–61.

    Article  CAS  PubMed  Google Scholar 

  37. Bruckert E, Labreuche J, Amarenco P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis. 2010;210:353–61.

    Article  CAS  PubMed  Google Scholar 

  38. Albers JJ, Slee A, O’Brien KD, et al. Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH Trial (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglyceride and Impact on Global Health Outcomes). J Am Coll Cardiol. 2013;62:1575–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Bregar U, Jug B, Keber I, Cevc M, Sebestjen M. Extended-release niacin/laropiprant improves endothelial function in patients after myocardial infarction. Heart Vessels. 2013;29(3):313–9.

    Article  PubMed  Google Scholar 

  40. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J. 2013;34:1279–91.

  41. Merki E, Graham M, Taleb A, et al. Antisense oligonucleotide lowers plasma levels of apolipoprotein (a) and lipoprotein (a) in transgenic mice. J Am Coll Cardiol. 2011;57:1611–21.

    Article  CAS  PubMed  Google Scholar 

  42. Merki E, Graham MJ, Mullick AE, et al. Antisense oligonucleotide directed to human apolipoprotein B-100 reduces lipoprotein(a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein(a) transgenic mice. Circulation. 2008;118:743–53.

    Article  CAS  PubMed  Google Scholar 

  43. Kolski B, Tsimikas S. Emerging therapeutic agents to lower lipoprotein (a) levels. Curr Opin Lipidol. 2012;23:560–8.

    Article  CAS  PubMed  Google Scholar 

  44. Muller N, Schulte DM, Turk K, et al. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J Lipid Res. 2015;56:1034–42.

    Article  PubMed  CAS  Google Scholar 

  45. Desai NR, Kohli P, Giugliano RP, et al. AMG145, a monoclonal antibody against proprotein convertase subtilisin kexin type 9, significantly reduces lipoprotein(a) in hypercholesterolemic patients receiving statin therapy: an analysis from the LDL-C Assessment with Proprotein Convertase Subtilisin Kexin Type 9 Monoclonal Antibody Inhibition Combined with Statin Therapy (LAPLACE)-Thrombolysis in Myocardial Infarction (TIMI) 57 trial. Circulation. 2013;128:962–9.

    Article  CAS  PubMed  Google Scholar 

  46. Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371:2383–93. This was the first prospective investigation of one of the HDL cholesterol efflux assays in relation to cardiovascular disease. The investigators found that the capacity of apoA-I to accept cholesterol from macrophages was a strong inverse predictor of future cardiovascular disease, and that this association was robust to the adjustment for HDL-cholesterol levels.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Saleheen D, Scott R, Javad S et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3(7):507–13.

  49. Li XM, Tang WH, Mosior MK, et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler Thromb Vasc Biol. 2013;33:1696–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Guey LT, Pullinger CR, Ishida BY, et al. Relation of increased prebeta-1 high-density lipoprotein levels to risk of coronary heart disease. Am J Cardiol. 2011;108:360–6.

    Article  CAS  PubMed  Google Scholar 

  51. Asztalos BF, Cupples LA, Demissie S, et al. High-density lipoprotein subpopulation profile and coronary heart disease prevalence in male participants of the Framingham Offspring Study. Arterioscler Thromb Vasc Biol. 2004;24:2181–7.

    Article  CAS  PubMed  Google Scholar 

  52. Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. 2009;119:931–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Parish S, Offer A, Clarke R, et al. Lipids and lipoproteins and risk of different vascular events in the MRC/BHF Heart Protection Study. Circulation. 2012;125:2469–78.

    Article  CAS  PubMed  Google Scholar 

  54. Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991;325:373–81.

    Article  CAS  PubMed  Google Scholar 

  55. Williams PT, Feldman DE. Prospective study of coronary heart disease vs. HDL2, HDL3, and other lipoproteins in Gofman’s Livermore Cohort. Atherosclerosis. 2011;214:196–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. van der Steeg WA, Holme I, Boekholdt SM, et al. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J Am Coll Cardiol. 2008;51:634–42.

    Article  PubMed  CAS  Google Scholar 

  57. Asztalos BF, Collins D, Cupples LA, et al. Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the Veterans Affairs HDL Intervention Trial. Arterioscler Thromb Vasc Biol. 2005;25:2185–91.

    Article  CAS  PubMed  Google Scholar 

  58. Asztalos BF, Collins D, Horvath KV, Bloomfield HE, Robins SJ, Schaefer EJ. Relation of gemfibrozil treatment and high-density lipoprotein subpopulation profile with cardiovascular events in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Metab Clin Exp. 2008;57:77–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Shah AS, Tan L, Long JL, Davidson WS. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res. 2013;54:2575–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. HDL Proteome Watch. http://homepages.uc.edu/~davidswm/HDLproteome.html. Retrieved from the www on August 11th 2015.

  61. Riwanto M, Rohrer L, Roschitzki B, et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation. 2013;127:891–904.

    Article  CAS  PubMed  Google Scholar 

  62. Navab M, Hama SY, Hough GP, Subbanagounder G, Reddy ST, Fogelman AM. A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J Lipid Res. 2001;42:1308–17.

    CAS  PubMed  Google Scholar 

  63. Catapano AL, Pirillo A, Bonacina F, Norata GD. HDL in innate and adaptive immunity. Cardiovasc Res. 2014;103:372–83.

    Article  CAS  PubMed  Google Scholar 

  64. Shao B, Tang C, Sinha A, et al. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ Res. 2014;114:1733–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Huang Y, Didonato JA, Levison BS, et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med. 2014;20:193–203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Jensen MK, Rimm EB, Furtado JD, Sacks FM. Apolipoprotein C-III as a potential modulator of the association between HDL-cholesterol and incident coronary heart disease. J Am Heart Assoc. 2012;1(2):jah3-e000232.

  67. Jensen MJ, Furtado JD, Rimm EB, Sacks FM, Overvad K. Presence of apolipoprotein C-III defines a high density lipoprotein subtype that is not inversely associated with incident coronary events. Epidemiology and Prevention/Physical Activity, Nutrition and Metabolism 2013 Scientific Sessions: Circulation, 2013.

  68. Kawakami A, Aikawa M, Libby P, Alcaide P, Luscinskas FW, Sacks FM. Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation. 2006;113:691–700.

    Article  CAS  PubMed  Google Scholar 

  69. Graham MJ, Lee RG, Bell 3rd TA, et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112:1479–90.

    Article  CAS  PubMed  Google Scholar 

  70. Taleb A, Witztum JL, Tsimikas S. Oxidized phospholipids on apoB-100-containing lipoproteins: a biomarker predicting cardiovascular disease and cardiovascular events. Biomark Med. 2011;5:673–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Bertoia ML, Pai JK, Lee JH, et al. Oxidation-specific biomarkers and risk of peripheral artery disease. J Am Coll Cardiol. 2013;61:2169–79. Oxidized phospholipids on apolipoprotein B-100-containing lipoproteins were positively associated with risk of peripheral artery disease in men and women where each additional SD was associated with a 37% greater risk.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta. 2006;1761:1246–59.

    Article  CAS  PubMed  Google Scholar 

  73. Stafforini DM, Prescott SM, McIntyre TM. Human plasma platelet-activating factor acetylhydrolase. Purification and properties. J Biol Chem. 1987;262:4223–30.

    CAS  PubMed  Google Scholar 

  74. Asano K, Okamoto S, Fukunaga K, et al. Cellular source(s) of platelet-activating-factor acetylhydrolase activity in plasma. Biochem Biophys Res Commun. 1999;261:511–4.

    Article  CAS  PubMed  Google Scholar 

  75. Tsimihodimos V, Karabina SA, Tambaki AP, et al. Atorvastatin preferentially reduces LDL-associated platelet-activating factor acetylhydrolase activity in dyslipidemias of type IIA and type IIB. Arterioscler Thromb Vasc Biol. 2002;22:306–11.

    Article  CAS  PubMed  Google Scholar 

  76. Ali M, Madjid M. Lipoprotein-associated phospholipase A2: a cardiovascular risk predictor and a potential therapeutic target. Futur Cardiol. 2009;5:159–73.

    Article  CAS  Google Scholar 

  77. McConnell JP, Hoefner DM. Lipoprotein-associated phospholipase A2. Clin Lab Med. 2006;26:679–97. vii.

    Article  PubMed  Google Scholar 

  78. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol. 2005;25:923–31.

    Article  CAS  PubMed  Google Scholar 

  79. Rosenson RS, Stafforini DM. Modulation of oxidative stress, inflammation, and atherosclerosis by lipoprotein-associated phospholipase A2. J Lipid Res. 2012;53:1767–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Vittos O, Toana B, Vittos A, Moldoveanu E. Lipoprotein-associated phospholipase A2 (Lp-PLA2): a review of its role and significance as a cardiovascular biomarker. Biomarkers. 2012;17:289–302.

    Article  CAS  PubMed  Google Scholar 

  81. Mallat Z, Lambeau G, Tedgui A. Lipoprotein-associated and secreted phospholipases A(2) in cardiovascular disease: roles as biological effectors and biomarkers. Circulation. 2010;122:2183–200.

    Article  PubMed  Google Scholar 

  82. Mohler 3rd ER, Ballantyne CM, Davidson MH, et al. The effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent: the results of a multicenter, randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2008;51:1632–41.

    Article  CAS  PubMed  Google Scholar 

  83. White HD, Held C, Stewart R, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370:1702–11.

    Article  CAS  PubMed  Google Scholar 

  84. Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci. 2007;32:71–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol. 2010;55:2833–42.

    Article  CAS  PubMed  Google Scholar 

  86. Guella I, Asselta R, Ardissino D, et al. Effects of PCSK9 genetic variants on plasma LDL cholesterol levels and risk of premature myocardial infarction in the Italian population. J Lipid Res. 2010;51:3342–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Dubuc G, Chamberland A, Wassef H, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2004;24:1454–9.

    Article  CAS  PubMed  Google Scholar 

  88. Navarese EP, Kolodziejczak M, Schulze V, et al. Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis. Ann Intern Med. 2015;163(1):40–51. This meta-analysis of results from twenty-four RCTs of PCSK9 blockers found reductions in LDL-C of 48%, a 55% lower risk of all-cause mortality, a 50% lower risk of CVD mortality, and a 51% lower risk of MI.

    Article  PubMed  Google Scholar 

  89. Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.

    Article  CAS  PubMed  Google Scholar 

  90. Selvin E, Steffes MW, Zhu H, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362:800–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Selvin E, Coresh J, Golden SH, Brancati FL, Folsom AR, Steffes MW. Glycemic control and coronary heart disease risk in persons with and without diabetes: the atherosclerosis risk in communities study. Arch Intern Med. 2005;165:1910–6.

    Article  PubMed  Google Scholar 

  92. Pradhan AD, Rifai N, Buring JE, Ridker PM. Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic women. Am J Med. 2007;120:720–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Khaw KT, Wareham N, Bingham S, Luben R, Welch A, Day N. Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Ann Intern Med. 2004;141:413–20.

    Article  CAS  PubMed  Google Scholar 

  94. Adams RJ, Appleton SL, Hill CL, et al. Independent association of HbA(1c) and incident cardiovascular disease in people without diabetes. Obesity (Silver Spring). 2009;17:559–63.

    Article  CAS  Google Scholar 

  95. Lawlor DA, Fraser A, Ebrahim S, Smith GD. Independent associations of fasting insulin, glucose, and glycated haemoglobin with stroke and coronary heart disease in older women. PLoS Med. 2007;4:e263.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Pai JK, Cahill LE, Hu FB, Rexrode KM, Manson JE, Rimm EB. Hemoglobin a1c is associated with increased risk of incident coronary heart disease among apparently healthy, nondiabetic men and women. J Am Heart Assoc. 2013;2:e000077.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Blake GJ, Pradhan AD, Manson JE, et al. Hemoglobin A1c level and future cardiovascular events among women. Arch Intern Med. 2004;164:757–61.

    Article  CAS  PubMed  Google Scholar 

  98. Sarwar N, Aspelund T, Eiriksdottir G, et al. Markers of dysglycaemia and risk of coronary heart disease in people without diabetes: Reykjavik prospective study and systematic review. PLoS Med. 2010;7, e1000278.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Gerstein HC. More insights on the dysglycaemia-cardiovascular connection. Lancet. 2010;375:2195–6.

    Article  PubMed  Google Scholar 

  100. Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001;50:1126–33.

    Article  CAS  PubMed  Google Scholar 

  101. Ouchi N, Kihara S, Arita Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 2001;103:1057–63.

    Article  CAS  PubMed  Google Scholar 

  102. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004;291:1730–7.

    Article  CAS  PubMed  Google Scholar 

  103. Lindsay RS, Resnick HE, Zhu J, et al. Adiponectin and coronary heart disease: the Strong Heart Study. Arterioscler Thromb Vasc Biol. 2005;25:e15–6.

    Article  CAS  PubMed  Google Scholar 

  104. Sattar N, Wannamethee G, Sarwar N, et al. Adiponectin and coronary heart disease: a prospective study and meta-analysis. Circulation. 2006;114:623–9.

    Article  CAS  PubMed  Google Scholar 

  105. Arregui M, Buijsse B, Fritsche A, et al. Adiponectin and risk of stroke: prospective study and meta-analysis. Stroke. 2014;45:10–7.

    Article  CAS  PubMed  Google Scholar 

  106. Wu ZJ, Cheng YJ, Gu WJ, Aung LH. Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: a systematic review and meta-analysis. Metab Clin Exp. 2014;63:1157–66. This meta-analysis clarified that adjustment for potential intermediates led to a large amount of heterogeneity and inconsistent results among studies of adiponectin and risk of CVD.

    Article  CAS  PubMed  Google Scholar 

  107. Rathmann W, Herder C. Adiponectin and cardiovascular mortality: evidence for “reverse epidemiology”. Horm Metab Res. 2007;39:1–2.

    Article  CAS  PubMed  Google Scholar 

  108. Oh DK, Ciaraldi T, Henry RR. Adiponectin in health and disease. Diabetes Obes Metab. 2007;9:282–9.

    Article  CAS  PubMed  Google Scholar 

  109. Heidemann C, Sun Q, van Dam RM, et al. Total and high-molecular-weight adiponectin and resistin in relation to the risk for type 2 diabetes in women. Ann Intern Med. 2008;149:307–16.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Pischon T, Hu FB, Girman CJ, et al. Plasma total and high molecular weight adiponectin levels and risk of coronary heart disease in women. Atherosclerosis. 2011;219:322–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Kizer JR, Benkeser D, Arnold AM, et al. Total and high-molecular-weight adiponectin and risk of coronary heart disease and ischemic stroke in older adults. J Clin Endocrinol Metab. 2013;98:255–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Dastani Z, Johnson T, Kronenberg F, et al. The shared allelic architecture of adiponectin levels and coronary artery disease. Atherosclerosis. 2013;229:145–8.

    Article  CAS  PubMed  Google Scholar 

  113. Fisman EZ, Tenenbaum A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol. 2014;13:103.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Kizer JR. Adiponectin, cardiovascular disease, and mortality: parsing the dual prognostic implications of a complex adipokine. Metab Clin Exp. 2014;63:1079–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116:1784–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Coppola A, Marfella R, Coppola L, et al. Effect of weight loss on coronary circulation and adiponectin levels in obese women. Int J Cardiol. 2009;134:414–6.

    Article  PubMed  Google Scholar 

  117. Ix JH, Wassel CL, Kanaya AM, et al. Fetuin-A and incident diabetes mellitus in older persons. JAMA. 2008;300:182–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Stefan N, Fritsche A, Weikert C, et al. Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes. 2008;57:2762–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Sun Q, Cornelis MC, Manson JE, Hu FB. Plasma levels of fetuin-A and hepatic enzymes and risk of type 2 diabetes in women in the U.S. Diabetes. 2013;62:49–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Expert Committee on the Diagnosis Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2003;26 Suppl 1:S5–S20.

    Google Scholar 

  121. Chen HY, Chiu YL, Hsu SP, Pai MF, Yang JY, Peng YS. Low serum fetuin A levels and incident stroke in patients with maintenance haemodialysis. Eur J Clin Investig. 2013;43:387–96.

    Article  CAS  Google Scholar 

  122. Stenvinkel P, Wang K, Qureshi AR, et al. Low fetuin-A levels are associated with cardiovascular death: impact of variations in the gene encoding fetuin. Kidney Int. 2005;67:2383–92.

    Article  CAS  PubMed  Google Scholar 

  123. Weikert C, Stefan N, Schulze MB, et al. Plasma fetuin-a levels and the risk of myocardial infarction and ischemic stroke. Circulation. 2008;118:2555–62.

    Article  CAS  PubMed  Google Scholar 

  124. Laughlin GA, Cummins KM, Wassel CL, Daniels LB, Ix JH. The association of fetuin-A with cardiovascular disease mortality in older community-dwelling adults: the Rancho Bernardo study. J Am Coll Cardiol. 2012;59:1688–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Sun Q, Jimenez MC, Townsend MK, et al. Plasma levels of fetuin-A and risk of coronary heart disease in US women: the Nurses’ Health Study. J Am Heart Assoc. 2014;3, e000939.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Jensen MK, Bartz TM, Mukamal KJ, et al. Fetuin-A, type 2 diabetes, and risk of cardiovascular disease in older adults: the cardiovascular health study. Diabetes Care. 2013;36:1222–8. This is the largest study of fetuin-A and incident CVD to date (N = 1,456 cases) and demonstrated potential differences in the association by glycemic status that provide valuable insight into the conflicting literature on this topic.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. New SE, Aikawa E. Cardiovascular calcification: an inflammatory disease. Circ J. 2011;75:1305–13.

    Article  CAS  PubMed  Google Scholar 

  128. Levy AP, Asleh R, Blum S, et al. Haptoglobin: basic and clinical aspects. Antioxid Redox Signal. 2010;12:293–304.

    Article  CAS  PubMed  Google Scholar 

  129. Cahill LE, Jensen MK, Chasman DI, Hazra A, Levy AP, Rimm EB. Currently available versions of genome-wide association studies cannot be used to query the common haptoglobin copy number variant. J Am Coll Cardiol. 2013;62:860–1.

    Article  PubMed Central  PubMed  Google Scholar 

  130. Asleh R, Miller-Lotan R, Aviram M, et al. Haptoglobin genotype is a regulator of reverse cholesterol transport in diabetes in vitro and in vivo. Circ Res. 2006;99:1419–25.

    Article  CAS  PubMed  Google Scholar 

  131. Asleh R, Marsh S, Shilkrut M, et al. Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ Res. 2003;92:1193–200.

    Article  CAS  PubMed  Google Scholar 

  132. Asleh R, Guetta J, Kalet-Litman S, Miller-Lotan R, Levy AP. Haptoglobin genotype- and diabetes-dependent differences in iron-mediated oxidative stress in vitro and in vivo. Circ Res. 2005;96:435–41.

    Article  CAS  PubMed  Google Scholar 

  133. De Bacquer D, De Backer G, Langlois M, Delanghe J, Kesteloot H, Kornitzer M. Haptoglobin polymorphism as a risk factor for coronary heart disease mortality. Atherosclerosis. 2001;157:161–6.

    Article  PubMed  Google Scholar 

  134. Levy AP, Larson MG, Corey D, Lotan R, Vita JA, Benjamin EJ. Haptoglobin phenotype and prevalent coronary heart disease in the Framingham offspring cohort. Atherosclerosis. 2004;172:361–5.

    Article  CAS  PubMed  Google Scholar 

  135. Cahill LE, Levy AP, Chiuve SE, et al. Haptoglobin genotype is a consistent marker of coronary heart disease risk among individuals with elevated glycosylated hemoglobin. J Am Coll Cardiol. 2013;61:728–37. This study reported in multiple independent populations that individuals with the Hp2-2 genotype and hbA1c >6.5% were at 10-fold increased risk of CHD.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Levy AP, Hochberg I, Jablonski K, et al. Haptoglobin phenotype is an independent risk factor for cardiovascular disease in individuals with diabetes: the Strong Heart Study. J Am Coll Cardiol. 2002;40:1984–90.

    Article  PubMed  Google Scholar 

  137. Pechlaner R, Kiechl S, Willeit P, et al. Haptoglobin 2-2 genotype is not associated with cardiovascular risk in subjects with elevated glycohemoglobin—results from the Bruneck Study. J Am Heart Assoc. 2014;3:e000732.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  138. Staals J, Pieters BM, Knottnerus IL, et al. Haptoglobin polymorphism and lacunar stroke. Curr Neurovasc Res. 2008;5:153–8.

    Article  CAS  PubMed  Google Scholar 

  139. Costacou T, Secrest AM, Ferrell RE, Orchard TJ. Haptoglobin genotype and cerebrovascular disease incidence in type 1 diabetes. Diab Vasc Dis Res. 2014;11:335–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Costacou T, Rosano C, Aizenstein H, et al. The haptoglobin 1 allele correlates with white matter hyperintensities in middle-aged adults with type 1 diabetes. Diabetes. 2015;64:654–9.

    Article  CAS  PubMed  Google Scholar 

  141. Zhao X, Song S, Sun G, et al. Neuroprotective role of haptoglobin after intracerebral hemorrhage. J Neurosci Off J Soc Neurosci. 2009;29:15819–27.

    Article  CAS  Google Scholar 

  142. Vardi M, Blum S, Levy AP. Haptoglobin genotype and cardiovascular outcomes in diabetes mellitus—natural history of the disease and the effect of vitamin E treatment. Meta-analysis of the medical literature. Eur J Intern Med. 2012;23:628–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Krause PJ, Bockenstedt LK. Cardiology patient pages. Lyme disease and the heart. Circulation. 2013;127:e451–4.

    Article  PubMed  Google Scholar 

  144. Siscovick DS, Schwartz SM, Corey L, et al. Chlamydia pneumoniae, herpes simplex virus type 1, and cytomegalovirus and incident myocardial infarction and coronary heart disease death in older adults: the Cardiovascular Health Study. Circulation. 2000;102:2335–40.

    Article  CAS  PubMed  Google Scholar 

  145. Roivainen M, Viik-Kajander M, Palosuo T, et al. Infections, inflammation, and the risk of coronary heart disease. Circulation. 2000;101:252–7.

    Article  CAS  PubMed  Google Scholar 

  146. Haarala A, Kahonen M, Lehtimaki T, et al. Relation of high cytomegalovirus antibody titres to blood pressure and brachial artery flow-mediated dilation in young men: the Cardiovascular Risk in Young Finns Study. Clin Exp Immunol. 2012;167:309–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Mundkur LA, Shivanandan H, Hebbagudi S, et al. Human cytomegalovirus neutralising antibodies and increased risk of coronary artery disease in Indian population. Heart. 2012;98:982–7.

    Article  CAS  PubMed  Google Scholar 

  148. Pothineni NV, Delongchamp R, Vallurupalli S, et al. Impact of hepatitis C seropositivity on the risk of coronary heart disease events. Am J Cardiol. 2014;114:1841–5. This study reports an increased incidence of CHD events in patients with hepatitis C virus seropositivity.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Grayston JT, Kronmal RA, Jackson LA, et al. Azithromycin for the secondary prevention of coronary events. N Engl J Med. 2005;352:1637–45.

    Article  CAS  PubMed  Google Scholar 

  150. Song Z, Brassard P, Brophy JM. A meta-analysis of antibiotic use for the secondary prevention of cardiovascular diseases. Can J Cardiol. 2008;24:391–5.

    Article  PubMed Central  PubMed  Google Scholar 

  151. Jin YL, Zhu T, Xu L, et al. Uric acid levels, even in the normal range, are associated with increased cardiovascular risk: the Guangzhou Biobank Cohort Study. Int J Cardiol. 2013;168:2238–41.

    Article  PubMed  Google Scholar 

  152. Punzi L, So A. Serum uric acid and gout: from the past to molecular biology. Curr Med Res Opin. 2013;29 Suppl 3:3–8.

    Article  CAS  PubMed  Google Scholar 

  153. Grassi D, Ferri L, Desideri G, et al. Chronic hyperuricemia, uric acid deposit and cardiovascular risk. Curr Pharm Des. 2013;19:2432–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2011;63:102–10.

    Article  CAS  Google Scholar 

  155. Puddu P, Puddu GM, Cravero E, Vizioli L, Muscari A. Relationships among hyperuricemia, endothelial dysfunction and cardiovascular disease: molecular mechanisms and clinical implications. J Cardiol. 2012;59:235–42.

    Article  PubMed  Google Scholar 

  156. Fenech G, Rajzbaum G, Mazighi M, Blacher J. Serum uric acid and cardiovascular risk: state of the art and perspectives. Joint Bone Spine. 2014;81:392–7.

    Article  CAS  PubMed  Google Scholar 

  157. Dutta A, Henley W, Pilling LC, Wallace RB, Melzer D. Uric acid measurement improves prediction of cardiovascular mortality in later life. J Am Geriatr Soc. 2013;61:319–26.

    Article  PubMed  Google Scholar 

  158. Juraschek SP, Tunstall-Pedoe H, Woodward M. Serum uric acid and the risk of mortality during 23 years follow-up in the Scottish Heart Health Extended Cohort Study. Atherosclerosis. 2014;233:623–9.

    Article  CAS  PubMed  Google Scholar 

  159. Strasak AM, Kelleher CC, Brant LJ, et al. Serum uric acid is an independent predictor for all major forms of cardiovascular death in 28,613 elderly women: a prospective 21-year follow-up study. Int J Cardiol. 2008;125:232–9.

    Article  PubMed  Google Scholar 

  160. Kuo CF, See LC, Yu KH, Chou IJ, Chiou MJ, Luo SF. Significance of serum uric acid levels on the risk of all-cause and cardiovascular mortality. Rheumatology (Oxford). 2013;52:127–34. This large prospective study (N = 7,035 CVD deaths) demonstrated a U-shaped relationship between SUA levels and CVD mortality among individuals both with and without prior cardiovascular disease, with high as well as low SUA levels conferring an elevated risk. These results support the hypothesized competing actions of SUA in both promoting and inhibiting the development of CVD and suggest that the dichotomous treatment of SUA in current clinical practice may be inadequate at identifying individuals at highest risk of CVD.

    Article  CAS  Google Scholar 

  161. Wen CP, David Cheng TY, Chan HT, et al. Is high serum uric acid a risk marker or a target for treatment? Examination of its independent effect in a large cohort with low cardiovascular risk. Am J Kidney Dis. 2010;56:273–88.

    Article  CAS  PubMed  Google Scholar 

  162. Zhao G, Huang L, Song M, Song Y. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis. 2013;231:61–8.

    Article  CAS  PubMed  Google Scholar 

  163. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2010;62:170–80.

    Google Scholar 

  164. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey. JAMA. 2000;283:2404–10.

    Article  CAS  PubMed  Google Scholar 

  165. Kivity S, Kopel E, Maor E, et al. Association of serum uric acid and cardiovascular disease in healthy adults. Am J Cardiol. 2013;111:1146–51.

    Article  CAS  PubMed  Google Scholar 

  166. Strasak A, Ruttmann E, Brant L, et al. Serum uric acid and risk of cardiovascular mortality: a prospective long-term study of 83,683 Austrian men. Clin Chem. 2008;54:273–84.

    Article  CAS  PubMed  Google Scholar 

  167. Sumino H, Ichikawa S, Kanda T, Nakamura T, Sakamaki T. Reduction of serum uric acid by hormone replacement therapy in postmenopausal women with hyperuricaemia. Lancet. 1999;354:650.

    Article  CAS  PubMed  Google Scholar 

  168. Ioannou GN, Boyko EJ. Effects of menopause and hormone replacement therapy on the associations of hyperuricemia with mortality. Atherosclerosis. 2013;226:220–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Shifren JL. Androgens, estrogens, and metabolic syndrome at midlife. Menopause. 2009;16:226–8.

    Article  PubMed  Google Scholar 

  170. Kavousi M, Elias-Smale S, Rutten JH, et al. Evaluation of newer risk markers for coronary heart disease risk classification: a cohort study. Ann Intern Med. 2012;156:438–44.

    Article  PubMed  Google Scholar 

  171. Kleber ME, Delgado G, Grammer TB, Silbernagel G, Huang J, Krämer BK, Ritz E, März W. Uric Acid and Cardiovascular Events: A Mendelian Randomization Study. J Am Soc Nephrol. 2015. doi:10.1681/ASN.2014070660

  172. Savarese G, Ferri C, Trimarco B, et al. Changes in serum uric acid levels and cardiovascular events: a meta-analysis. Nutr Metab Cardiovasc Dis. 2013;23:707–14.

    Article  CAS  PubMed  Google Scholar 

  173. MacDonald TM, Ford I, Nuki G, et al. Protocol of the Febuxostat versus Allopurinol Streamlined Trial (FAST): a large prospective, randomised, open, blinded endpoint study comparing the cardiovascular safety of allopurinol and febuxostat in the management of symptomatic hyperuricaemia. BMJ Open. 2014;4:e005354.

    Article  PubMed Central  PubMed  Google Scholar 

  174. Di Angelantonio E, Chowdhury R, Sarwar N, et al. B-type natriuretic peptides and cardiovascular risk: systematic review and meta-analysis of 40 prospective studies. Circulation. 2009;120:2177–87.

    Article  PubMed  CAS  Google Scholar 

  175. Kara K, Lehmann N, Neumann T, et al. NT-proBNP is superior to BNP for predicting first cardiovascular events in the general population: the Heinz Nixdorf Recall Study. Int J Cardiol. 2015;183:155–61. This study provides strong evidence that NT-proBNP can predict incident CVD in a generally healthy population.

    Article  PubMed  Google Scholar 

  176. Manson JE, Bassuk SS. Biomarkers of cardiovascular disease risk in women. Metab Clin Exp. 2015;64:S33–9.

    Article  CAS  PubMed  Google Scholar 

  177. Cleland JG, McMurray JJ, Kjekshus J, et al. Plasma concentration of amino-terminal pro-brain natriuretic peptide in chronic heart failure: prediction of cardiovascular events and interaction with the effects of rosuvastatin: a report from CORONA (Controlled Rosuvastatin Multinational Trial in Heart Failure). J Am Coll Cardiol. 2009;54:1850–9.

    Article  CAS  PubMed  Google Scholar 

  178. deFilippi CR, de Lemos JA, Christenson RH, et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304:2494–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Saunders JT, Nambi V, de Lemos JA, et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation. 2011;123:1367–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  180. Everett BM, Cook NR, Magnone MC, et al. Sensitive cardiac troponin T assay and the risk of incident cardiovascular disease in women with and without diabetes mellitus: the Women’s Health Study. Circulation. 2011;123:2811–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. Zeller T, Tunstall-Pedoe H, Saarela O, et al. High population prevalence of cardiac troponin I measured by a high-sensitivity assay and cardiovascular risk estimation: the MORGAM Biomarker Project Scottish Cohort. Eur Heart J. 2014;35:271–81.

    Article  CAS  PubMed  Google Scholar 

  182. Apple FS, Steffen LM, Pearce LA, Murakami MM, Luepker RV. Increased cardiac troponin I as measured by a high-sensitivity assay is associated with high odds of cardiovascular death: the Minnesota Heart Survey. Clin Chem. 2012;58:930–5.

    Article  CAS  PubMed  Google Scholar 

  183. Apple FS, Collinson PO, Biomarkers ITFoCAoC. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem. 2012;58:54–61.

    Article  CAS  PubMed  Google Scholar 

  184. Hoefer IE, Steffens S, Ala-Korpela M, Bäck M, Badimon L, Bochaton-Piallat ML, Boulanger CM, Caligiuri G, Dimmeler S, Egido J, Evans PC, Guzik T, Kwak BR, Landmesser U, Mayr M, Monaco C, Pasterkamp G, Tuñón J, Weber C; ESC Working Group Atherosclerosis and Vascular Biology.Novel methodologies for biomarker discovery in atherosclerosis. Eur Heart J. 2015 Jun 5. doi:10.1093/eurheartj/ehv236

  185. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469:336–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Moore KJ, Rayner KJ, Suarez Y, Fernandez-Hernando C. microRNAs and cholesterol metabolism. Trends Endocrinol Metab. 2010;21:699–706.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110:483–95.

    Article  CAS  PubMed  Google Scholar 

  188. Kordalewska M, Markuszewski MJ. Metabolomics in cardiovascular diseases. J Pharm Biomed Anal. 2015;113:121–36.

    Article  CAS  PubMed  Google Scholar 

  189. Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One. 2010;5:e15234.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  190. Huffman KM, Shah SH, Stevens RD, et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 2009;32:1678–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. Shah SH, Bain JR, Muehlbauer MJ, et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010;3:207–14.

    Article  CAS  PubMed  Google Scholar 

  192. Shah SH, Sun JL, Stevens RD, et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am Heart J. 2012;163:844.e1–50.e1.

    Article  CAS  Google Scholar 

  193. Magnusson M, Lewis GD, Ericson U, et al. A diabetes-predictive amino acid score and future cardiovascular disease. Eur Heart J. 2013;34:1982–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  194. Wurtz P, Havulinna AS, Soininen P, et al. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation. 2015;131:774–85. Through nuclear magnetic resonance and confirmatory mass spectrometry metabolite profiling in one discovery and two replication cohorts (N = 1,741 events), this study identified phenylalanine and several novel lipid species as independent predictors of incident CVD.

    Article  PubMed  CAS  Google Scholar 

  195. Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31:69–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Scaglia F, Brunetti-Pierri N, Kleppe S, et al. Clinical consequences of urea cycle enzyme deficiencies and potential links to arginine and nitric oxide metabolism. J Nutr. 2004;134:2775S–82S. discussion 2796S–2797S.

    CAS  PubMed  Google Scholar 

  198. Tang WH, Wang Z, Cho L, Brennan DM, Hazen SL. Diminished global arginine bioavailability and increased arginine catabolism as metabolic profile of increased cardiovascular risk. J Am Coll Cardiol. 2009;53:2061–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Stegemann C, Pechlaner R, Willeit P, et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation. 2014;129:1821–31.

    Article  CAS  PubMed  Google Scholar 

  200. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012;126:1110–20.

    Article  PubMed Central  PubMed  Google Scholar 

  201. The Emerging Risk Factors Collaboration. Glycated hemoglobin measurement and prediction of cardiovascular disease. JAMA. 2014;311:1225–33.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Leah E. Cahill, Monica L. Bertoia, Sarah A. Aroner, and Kenneth J. Mukamal declare that they have no conflict of interest.

Majken K. Jensen has a patent US88463212B, awarded Sept. 2014 issued, and a patent 61/798,575, filed May 15, 2013 pending.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Authors’ Contributions

All authors researched the data for the article and provided a substantial contribution to writing and editing the content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majken K. Jensen.

Additional information

This article is part of the Topical Collection on Macrovascular Complications in Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cahill, L.E., Bertoia, M.L., Aroner, S.A. et al. New and Emerging Biomarkers in Cardiovascular Disease. Curr Diab Rep 15, 88 (2015). https://doi.org/10.1007/s11892-015-0661-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0661-y

Keywords

Navigation