Skip to main content
Log in

Multiparametric Imaging for the Locoregional Follow-up of Rectal Cancer

  • Diagnostic and Interventional Radiology Innovations in Colorectal Cancer (S Gourtsoyianni, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Purpose of Review

To discuss the potential of multiparametric imaging for the locoregional follow-up of rectal cancer by outlining the strengths/weaknesses of anatomical imaging in specific MRI and highlighting the potential of the most relevant functional imaging and novel image post-processing techniques

Recent findings

In addition to anatomical imaging, diffusion-weighted imaging (DWI) and PET have been most extensively studied for the locoregional follow-up of rectal cancer. Fewer (and more recent) studies have focused on the use of other functional MRI techniques, advanced post-processing methods such as Radiomics and hybrid imaging (PET-MRI).

Summary

Anatomical imaging experiences difficulties in the locoregional assessment of rectal cancer after chemoradiotherapy and surgery. Addition of DWI to anatomical MRI has proven its benefit for qualitative response assessment after neoadjuvant chemoradiotherapy. PET mainly has a role for the detection of recurrent disease after surgery and may be valuable for early response prediction. Evidence for multiparametric assessment of PET combined with MRI or hybrid PET-MRI is sparse. More quantitative functional imaging techniques including DCE-MRI and advanced post-processing techniques such as Radiomics have shown potential in research settings to render biomarkers of response but require standardisation and large-scale validation, preferably in trial settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. van der Valk MJM, Hilling DE, Bastiaannet E, Meershoek-Klein Kranenbarg E, Beets GL, Figueiredo NL, et al. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study. Lancet. 2018;391(10139):2537–45.

    Article  PubMed  Google Scholar 

  2. van der Paardt MP, Zagers MB, Beets-Tan RG, Stoker J, Bipat S. Patients who undergo preoperative chemoradiotherapy for locally advanced rectal cancer restaged by using diagnostic MR imaging: a systematic review and meta-analysis. Radiology. 2013;269(1):101–12.

    Article  PubMed  Google Scholar 

  3. Sclafani F, Brown G, Cunningham D, Wotherspoon A, Mendes LST, Balyasnikova S, et al. Comparison between MRI and pathology in the assessment of tumour regression grade in rectal cancer. Br J Cancer. 2017;117(10):1478–85.

    Article  PubMed  PubMed Central  Google Scholar 

  4. • Beets-Tan RGH, Lambregts DMJ, Maas M, Bipat S, Barbaro B, Curvo-Semedo L, et al. Magnetic resonance imaging for clinical management of rectal cancer: updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol. 2018;28(4):1465–75. Useful guidelines on how to perform, interpret, and report MRI in rectal cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  5. • Schurink NW, Lambregts DMJ, Beets-Tan RGH. Diffusion-weighted imaging in rectal cancer: current applications and future perspectives. Br J Radiol. 2019;92(1096):20180655. Recent comprehensive overview paper discussing the various applications of DWI in rectal cancer and their current evidence base.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lambregts DM, Vandecaveye V, Barbaro B, Bakers FC, Lambrecht M, Maas M, et al. Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol. 2011;18(8):2224–31.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim SH, Lee JM, Hong SH, Kim GH, Lee JY, Han JK, et al. Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy. Radiology. 2009;253(1):116–25.

    Article  PubMed  Google Scholar 

  8. Lambregts DM, van Heeswijk MM, Delli Pizzi A, van Elderen SG, Andrade L, Peters NH, et al. Diffusion-weighted MRI to assess response to chemoradiotherapy in rectal cancer: main interpretation pitfalls and their use for teaching. Eur Radiol. 2017;27(10):4445–54.

    Article  PubMed  Google Scholar 

  9. Maas M, Lambregts DM, Nelemans PJ, Heijnen LA, Martens MH, Leijtens JW, et al. Assessment of clinical complete response after chemoradiation for rectal cancer with digital rectal examination, endoscopy, and MRI: selection for organ-saving treatment. Ann Surg Oncol. 2015;22(12):3873–80.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gollub MJ, Blazic I, Felder S, Knezevic A, Gonen M, Garcia-Aguilar J, et al. Value of adding dynamic contrast-enhanced MRI visual assessment to conventional MRI and clinical assessment in the diagnosis of complete tumour response to chemoradiotherapy for rectal cancer. Eur Radiol. 2019;29(3):1104–13.

    Article  PubMed  Google Scholar 

  11. Fornell-Perez R, Perez-Alonso E, Porcel-de-Peralta G, Duran-Castellon A, Vivas-Escalona V, Aranda-Sanchez J, et al. Primary and post-chemoradiotherapy staging using MRI in rectal cancer: the role of diffusion imaging in the assessment of perirectal infiltration. Abdom Radiol. 2019;44:3674–82. https://doi.org/10.1007/s00261-019-02139-4.

    Article  Google Scholar 

  12. Lambregts DMJ, Rao S-X, Sassen S, Martens MH, Heijnen LA, Buijsen J, et al. MRI and diffusion-weighted MRI volumetry for identification of complete tumor responders after preoperative chemoradiotherapy in patients with rectal cancer: a bi-institutional validation study. Ann Surg. 2015;262(6):1034–9.

    Article  PubMed  Google Scholar 

  13. Curvo-Semedo L, Lambregts DM, Maas M, Thywissen T, Mehsen RT, Lammering G, et al. Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy--conventional MR volumetry versus diffusion-weighted MR imaging. Radiology. 2011;260(3):734–43.

    Article  PubMed  Google Scholar 

  14. Ha HI, Kim AY, Yu CS, Park SH, Ha HK. Locally advanced rectal cancer: diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy. Eur Radiol. 2013;23(12):3345–53.

    Article  PubMed  Google Scholar 

  15. Sathyakumar K, Chandramohan A, Masih D, Jesudasan MR, Pulimood A, Eapen A. Best MRI predictors of complete response to neoadjuvant chemoradiation in locally advanced rectal cancer. Br J Radiol. 2016;89(1060):20150328.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nougaret S, Vargas HA, Lakhman Y, Sudre R, Do RK, Bibeau F, et al. Intravoxel incoherent motion-derived histogram metrics for assessment of response after combined chemotherapy and radiation therapy in rectal cancer: initial experience and comparison between single-section and volumetric analyses. Radiology. 2016;280(2):446–54.

    Article  PubMed  Google Scholar 

  17. Cho SH, Kim GC, Jang YJ, Ryeom H, Kim HJ, Shin KM, et al. Locally advanced rectal cancer: post-chemoradiotherapy ADC histogram analysis for predicting a complete response. Acta Radiol. 2015;56(9):1042–50.

    Article  PubMed  Google Scholar 

  18. Hu F, Tang W, Sun Y, Wan D, Cai S, Zhang Z, et al. The value of diffusion kurtosis imaging in assessing pathological complete response to neoadjuvant chemoradiation therapy in rectal cancer: a comparison with conventional diffusion-weighted imaging. Oncotarget. 2017;8(43):75597–606.

    PubMed  PubMed Central  Google Scholar 

  19. Yu J, Xu Q, Song JC, Li Y, Dai X, Huang DY, et al. The value of diffusion kurtosis magnetic resonance imaging for assessing treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol. 2017;27(5):1848–57.

    Article  PubMed  Google Scholar 

  20. Lu W, Jing H, Ju-Mei Z, Shao-Lin N, Fang C, Xiao-Ping Y, et al. Intravoxel incoherent motion diffusion-weighted imaging for discriminating the pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Sci Rep. 2017;7(1):8496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dijkhoff RAP, Beets-Tan RGH, Lambregts DMJ, Beets GL, Maas M. Value of DCE-MRI for staging and response evaluation in rectal cancer: a systematic review. Eur J Radiol. 2017;95:155–68.

    Article  PubMed  Google Scholar 

  22. Intven M, Reerink O, Philippens ME. Dynamic contrast enhanced MR imaging for rectal cancer response assessment after neo-adjuvant chemoradiation. J Magn Reson Imaging. 2015;41(6):1646–53.

    Article  PubMed  Google Scholar 

  23. Tong T, Sun Y, Gollub MJ, Peng W, Cai S, Zhang Z, et al. Dynamic contrast-enhanced MRI: use in predicting pathological complete response to neoadjuvant chemoradiation in locally advanced rectal cancer. J Magn Reson Imaging. 2015;42(3):673–80.

    Article  PubMed  Google Scholar 

  24. Lim JS, Kim D, Baek SE, Myoung S, Choi J, Shin SJ, et al. Perfusion MRI for the prediction of treatment response after preoperative chemoradiotherapy in locally advanced rectal cancer. Eur Radiol. 2012;22(8):1693–700.

    Article  PubMed  Google Scholar 

  25. Atkin G, Taylor NJ, Daley FM, Stirling JJ, Richman P, Glynne-Jones R, et al. Dynamic contrast-enhanced magnetic resonance imaging is a poor measure of rectal cancer angiogenesis. Br J Surg. 2006;93(8):992–1000.

    Article  PubMed  CAS  Google Scholar 

  26. Martens MH, Lambregts DM, Papanikolaou N, Alefantinou S, Maas M, Manikis GC, et al. Magnetization transfer imaging to assess tumour response after chemoradiotherapy in rectal cancer. Eur Radiol. 2016;26(2):390–7.

    Article  PubMed  Google Scholar 

  27. Kim MJ, Lee SJ, Lee JH, Kim SH, Chun HK, Kim SH, et al. Detection of rectal cancer and response to concurrent chemoradiotherapy by proton magnetic resonance spectroscopy. Magn Reson Imaging. 2012;30(6):848–53.

    Article  PubMed  Google Scholar 

  28. Li C, Lan X, Yuan H, Feng H, Xia X, Zhang Y. 18F-FDG PET predicts pathological response to preoperative chemoradiotherapy in patients with primary rectal cancer: a meta-analysis. Ann Nucl Med. 2014;28(5):436–46.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang C, Tong J, Sun X, Liu J, Wang Y, Huang G. 18F-FDG-PET evaluation of treatment response to neo-adjuvant therapy in patients with locally advanced rectal cancer: a meta-analysis. Int J Cancer. 2012;131(11):2604–11.

    Article  PubMed  CAS  Google Scholar 

  30. Rendl G, Rettenbacher L, Holzmannhofer J, Datz L, Hauser-Kronberger C, Fastner G, et al. Assessment of response to neoadjuvant radiochemotherapy with F-18 FLT and F-18 FDG PET/CT in patients with rectal cancer. Ann Nucl Med. 2015;29(3):284–94.

    Article  PubMed  CAS  Google Scholar 

  31. Puri T, Greenhalgh TA, Wilson JM, Franklin J, Wang LM, Strauss V, et al. [(18)F] Fluoromisonidazole PET in rectal cancer. EJNMMI Res. 2017;7(1):78.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Havelund BM, Holdgaard PC, Rafaelsen SR, Mortensen LS, Theil J, Bender D, et al. Tumour hypoxia imaging with 18F-fluoroazomycinarabinofuranoside PET/CT in patients with locally advanced rectal cancer. Nucl Med Commun. 2013;34(2):155–61.

    Article  PubMed  CAS  Google Scholar 

  33. Withofs N, Martinive P, Vanderick J, Bletard N, Scagnol I, Mievis F, et al. [(18)F]FPRGD2 PET/CT imaging of integrin alphavbeta3 levels in patients with locally advanced rectal carcinoma. Eur J Nucl Med Mol Imaging. 2016;43(4):654–62.

    Article  PubMed  CAS  Google Scholar 

  34. Parashar B, Wernicke AG, Rice S, Osborne J, Singh P, Nori D, et al. Early assessment of radiation response using a novel functional imaging modality--[18F] fluorocholine PET (FCH-PET): a pilot study. Discov Med. 2012;14(74):13–20.

    PubMed  PubMed Central  Google Scholar 

  35. Heijnen LA, Maas M, Beets-Tan RG, Berkhof M, Lambregts DM, Nelemans PJ, et al. Nodal staging in rectal cancer: why is restaging after chemoradiation more accurate than primary nodal staging? Int J Color Dis. 2016;31(6):1157–62.

    Article  Google Scholar 

  36. Koh DM, Chau I, Tait D, Wotherspoon A, Cunningham D, Brown G. Evaluating mesorectal lymph nodes in rectal cancer before and after neoadjuvant chemoradiation using thin-section T2-weighted magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2008;71(2):456–61.

    Article  PubMed  Google Scholar 

  37. Lambregts DM, Beets GL, Maas M, Kessels AG, Bakers FC, Cappendijk VC, et al. Accuracy of gadofosveset-enhanced MRI for nodal staging and restaging in rectal cancer. Ann Surg. 2011;253(3):539–45.

    Article  PubMed  Google Scholar 

  38. Koh DM, Brown G, Collins DJ. Nanoparticles in rectal cancer imaging. Cancer Biomark. 2009;5(2):89–98.

    Article  PubMed  Google Scholar 

  39. Martens MH, Maas M, Heijnen LA, Lambregts DM, Leijtens JW, Stassen LP, et al. Long-term outcome of an organ preservation program after neoadjuvant treatment for rectal cancer. J Natl Cancer Inst. 2016;108(12).

    Article  PubMed  Google Scholar 

  40. Smith JD, Ruby JA, Goodman KA, Saltz LB, Guillem JG, Weiser MR, et al. Nonoperative management of rectal cancer with complete clinical response after neoadjuvant therapy. Ann Surg. 2012;256(6):965–72.

    Article  PubMed  Google Scholar 

  41. Lambregts DM, Lahaye MJ, Heijnen LA, Martens MH, Maas M, Beets GL, et al. MRI and diffusion-weighted MRI to diagnose a local tumour regrowth during long-term follow-up of rectal cancer patients treated with organ preservation after chemoradiotherapy. Eur Radiol. 2016;26(7):2118–25.

    Article  PubMed  Google Scholar 

  42. Hupkens BJP, Maas M, Martens MH, Deserno W, Leijtens JWA, Nelemans PJ, et al. MRI surveillance for the detection of local recurrence in rectal cancer after transanal endoscopic microsurgery. Eur Radiol. 2017;27(12):4960–9.

    Article  PubMed  Google Scholar 

  43. Habr-Gama A, Gama-Rodrigues J, Perez RO, Proscurshim I, Sao Juliao GP, Kruglensky D, et al. Late assessment of local control by PET in patients with distal rectal cancer managed non-operatively after complete tumor regression following neoadjuvant chemoradiation. Tech Coloproctol. 2008;12(1):74–6.

    PubMed  CAS  Google Scholar 

  44. Rosati G, Ambrosini G, Barni S, Andreoni B, Corradini G, Luchena G, et al. A randomized trial of intensive versus minimal surveillance of patients with resected Dukes B2-C colorectal carcinoma. Ann Oncol. 2016;27(2):274–80.

    Article  PubMed  CAS  Google Scholar 

  45. Wille-Jorgensen P, Syk I, Smedh K, Laurberg S, Nielsen DT, Petersen SH, et al. Effect of more vs less frequent follow-up testing on overall and colorectal cancer-specific mortality in patients with stage II or III colorectal cancer: the COLOFOL randomized clinical trial. JAMA. 2018;319(20):2095–103.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Primrose JN, Perera R, Gray A, Rose P, Fuller A, Corkhill A, et al. Effect of 3 to 5 years of scheduled CEA and CT follow-up to detect recurrence of colorectal cancer: the FACS randomized clinical trial. JAMA. 2014;311(3):263–70.

    Article  PubMed  CAS  Google Scholar 

  47. Maas M, Rutten IJ, Nelemans PJ, Lambregts DM, Cappendijk VC, Beets GL, et al. What is the most accurate whole-body imaging modality for assessment of local and distant recurrent disease in colorectal cancer? A meta-analysis: imaging for recurrent colorectal cancer. Eur J Nucl Med Mol Imaging. 2011;38(8):1560–71.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lambregts DM, Cappendijk VC, Maas M, Beets GL, Beets-Tan RG. Value of MRI and diffusion-weighted MRI for the diagnosis of locally recurrent rectal cancer. Eur Radiol. 2011;21(6):1250–8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Colosio A, Soyer P, Rousset P, Barbe C, Nguyen F, Bouche O, et al. Value of diffusion-weighted and gadolinium-enhanced MRI for the diagnosis of pelvic recurrence from colorectal cancer. J Magn Reson Imaging. 2014;40(2):306–13.

    Article  PubMed  Google Scholar 

  50. Pennings JP, de Haas RJ, Murshid KJA, de Jong KP, Dierckx R, Kwee TC. FDG-avid presacral soft tissue mass in previously treated rectal cancer: diagnostic outcome and additional value of MRI, including diffusion-weighted imaging. Eur J Surg Oncol. 2019;45(4):606–12.

    Article  PubMed  Google Scholar 

  51. Blomqvist L, Fransson P, Hindmarsh T. The pelvis after surgery and radio-chemotherapy for rectal cancer studied with Gd-DTPA-enhanced fast dynamic MR imaging. Eur Radiol. 1998;8(5):781–7.

    Article  PubMed  CAS  Google Scholar 

  52. Muller-Schimpfle M, Brix G, Layer G, Schlag P, Engenhart R, Frohmuller S, et al. Recurrent rectal cancer: diagnosis with dynamic MR imaging. Radiology. 1993;189(3):881–9.

    Article  PubMed  CAS  Google Scholar 

  53. Gollub MJ, Cao K, Gultekin DH, Kuk D, Gonen M, Sohn M, et al. Prognostic aspects of DCE-MRI in recurrent rectal cancer. Eur Radiol. 2013;23(12):3336–44.

    Article  PubMed  CAS  Google Scholar 

  54. Plodeck V, Rahbari NN, Weitz J, Radosa CG, Laniado M, Hoffmann RT, et al. FDG-PET/MRI in patients with pelvic recurrence of rectal cancer: first clinical experiences. Eur Radiol. 2019;29(1):422–8.

    Article  PubMed  Google Scholar 

  55. Hotker AM, Tarlinton L, Mazaheri Y, Woo KM, Gonen M, Saltz LB, et al. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: a comparison of morphological, volumetric and functional MRI parameters. Eur Radiol. 2016;26(12):4303–12.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Petrillo M, Fusco R, Catalano O, Sansone M, Avallone A, Delrio P, et al. MRI for assessing response to neoadjuvant therapy in locally advanced rectal cancer using DCE-MR and DW-MR data sets: a preliminary report. Biomed Res Int. 2015;2015:514740.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Intven M, Monninkhof EM, Reerink O, Philippens ME. Combined T2w volumetry, DW-MRI and DCE-MRI for response assessment after neo-adjuvant chemoradiation in locally advanced rectal cancer. Acta Oncol. 2015;54(10):1729–36.

    Article  PubMed  CAS  Google Scholar 

  58. De Cecco CN, Ciolina M, Caruso D, Rengo M, Ganeshan B, Meinel FG, et al. Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol. 2016;41(9):1728–35.

    Article  Google Scholar 

  59. Cerny M, Dunet V, Rebecchini C, Hahnloser D, Prior J, Sempoux C, et al. Response of locally advanced rectal cancer (LARC) to radiochemotherapy: DW-MRI and multiparametric PET/CT in correlation with histopathology. Nuklearmedizin. 2019;58(1):28–38.

    Article  PubMed  Google Scholar 

  60. Ferri V, Vicente Lopez E, Quijano Collazo Y, Caruso R, Duran Gimenez Rico H, Ielpo B, et al. Quantitative analysis of 18-FDG-PET/MRI to assess pathological complete response following neoadjuvant radiochemotherapy in locally advanced rectal cancer. A prospective preliminary study. Acta Oncol. 2019;58(9):1246–9.

    Article  PubMed  Google Scholar 

  61. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational Radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–e7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Liu Z, Zhang XY, Shi YJ, Wang L, Zhu HT, Tang Z, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal Cancer. Clin Cancer Res. 2017;23(23):7253–62.

    Article  PubMed  CAS  Google Scholar 

  63. Nie K, Shi L, Chen Q, Hu X, Jabbour SK, Yue N, et al. Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on Radiomics of multiparametric MRI. Clin Cancer Res. 2016;22(21):5256–64.

    Article  PubMed  Google Scholar 

  64. Horvat N, Veeraraghavan H, Khan M, Blazic I, Zheng J, Capanu M, et al. MR imaging of rectal cancer: Radiomics analysis to assess treatment response after neoadjuvant therapy. Radiology. 2018;287(3):833–43.

    Article  PubMed  Google Scholar 

  65. Kassam Z, Burgers K, Walsh JC, Lee TY, Leong HS, Fisher B. A prospective feasibility study evaluating the role of multimodality imaging and liquid biopsy for response assessment in locally advanced rectal carcinoma. Abdom Radiol. 2019. https://doi.org/10.1007/s00261-019-02135-8.

    Article  PubMed  Google Scholar 

  66. Joye I, Debucquoy A, Deroose CM, Vandecaveye V, Cutsem EV, Wolthuis A, et al. Quantitative imaging outperforms molecular markers when predicting response to chemoradiotherapy for rectal cancer. Radiother Oncol. 2017;124(1):104–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. •• O’Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14(3):169–86. Paper published by the Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) who assembled experts to review, debate, and summarise the challenges of imaging biomarker validation and qualification in oncology.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doenja M. J. Lambregts.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diagnostic and Interventional Radiology Innovations in Colorectal Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambregts, D.M.J., Min, L.A., Schurink, N. et al. Multiparametric Imaging for the Locoregional Follow-up of Rectal Cancer. Curr Colorectal Cancer Rep 16, 19–28 (2020). https://doi.org/10.1007/s11888-020-00450-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-020-00450-7

Keywords

Navigation