Skip to main content

Advertisement

Log in

Coronary Angiography Complicated by Acute Ischaemic Stroke and the Use of Thrombolysis: a Cardiology Perspective and Narrative Review of Current Literature

  • Interventional Cardiology (SR Bailey and T Helmy, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Coronary angiography–associated acute ischaemic stroke (CAAIS) is an uncommon event but is associated with significant mortality and morbidity. The incidence of CAAIS has increased with a rise in the volume of coronary angiography (CA) and percutaneous coronary intervention (PCI) performed. Intravenous thrombolysis (IVT) is utilized in the general management of acute ischaemic stroke; however, it is associated with a higher risk of intracranial hemorrhage (ICH). As CA or PCI is performed more often in an aging population or high-risk patients that also carry an increased risk of ICH, it is vital to minimize additional complications from the treatment of CAAIS. This article aims to review the pathophysiological mechanisms for CAAIS, clarify the current evidence regarding IVT use in this setting, and thus assist cardiologists in the management of CAAIS.

Recent Findings

The pathophysiology for CAAIS may be different from acute ischaemic stroke in the general population. Embolic phenomena from dislodgement of calcium or other debris during manipulation of instrumentation during CA or PCI are likely mechanisms. This may contribute to altered thrombus composition, which affects the efficacy of IVT as suggested in recent studies. Furthermore, IVT in the management of CAAIS has not been evaluated specifically.

Summary

The utilization of IVT should be carefully considered in CAAIS given a paucity of evidence demonstrating safety and efficacy in this setting. A multidisciplinary pathway that emphasizes the involvement of cardiologists in the treatment decision-making process would aid in thoughtful risk-benefit evaluation for IVT use in CAAIS and reduce adverse patient outcomes. Future studies to assess the impact of this pathway on CAAIS outcomes would be beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Korn-Lubetzki I, Farkash R, Pachino RM, Almagor Y, Tzivoni D, Meerkin D. Incidence and risk factors of cerebrovascular events following cardiac catheterization. J Am Heart Assoc. 2022;2(6):e000413. https://doi.org/10.1161/JAHA.113.000413.

    Article  Google Scholar 

  2. Werner N, Zahn R, Zeymer U. Stroke in patients undergoing coronary angiography and percutaneous coronary intervention: incidence, predictors, outcome and therapeutic options. Expert Rev Cardiovasc Ther. 2012;10(10):1297–305. https://doi.org/10.1586/erc.12.78.

    Article  CAS  PubMed  Google Scholar 

  3. Alkhouli M, Alqahtani F, Tarabishy A, Sandhu G, Rihal CS. Incidence, predictors, and outcomes of acute ischemic stroke following percutaneous coronary intervention. JACC Cardiovasc Interv. 2019;12(15):1497–506. https://doi.org/10.1016/j.jcin.2019.04.015.

    Article  PubMed  Google Scholar 

  4. Rashid M, Fischman DL, Gulati M, et al. Temporal trends and inequalities in coronary angiography utilization in the management of non-ST-elevation acute coronary syndromes in the U.S. Sci Rep. 2019;9(1):240. https://doi.org/10.1038/s41598-018-36504-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fuchs S, Stabile E, Kinnaird TD, et al. Stroke complicating percutaneous coronary interventions. Circulation. 2002;106(1):86–91. https://doi.org/10.1161/01.CIR.0000020678.16325.E0.

    Article  PubMed  Google Scholar 

  6. Dukkipati S, O’Neill WW, Harjai KJ, et al. Characteristics of cerebrovascular accidents after percutaneous coronary interventions. J Am Coll Cardiol. 2004;43(7):1161–7. https://doi.org/10.1016/j.jacc.2003.11.033.

    Article  PubMed  Google Scholar 

  7. Wong SC, Minutello R, Hong MK. Neurological complications following percutaneous coronary interventions (a report from the 2000–2001 New York State Angioplasty Registry). Am J Cardiol. 2005;96(9):1248–50. https://doi.org/10.1016/j.amjcard.2005.06.065.

    Article  PubMed  Google Scholar 

  8. Kwok CS, Kontopantelis E, Myint PK, et al. Stroke following percutaneous coronary intervention: type-specific incidence, outcomes and determinants seen by the British Cardiovascular Intervention Society 2007–12. Eur Heart J. 2015;36(25):1618–28. https://doi.org/10.1093/eurheartj/ehv113.

    Article  PubMed  Google Scholar 

  9. Aggarwal G, Patlolla SH, Aggarwal S, et al. Temporal trends, predictors, and outcomes of acute ischemic stroke in acute myocardial infarction in the United States. J Am Heart Assoc. 2021;10(2):e017693. https://doi.org/10.1161/JAHA.120.017693.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bay B, Gossling A, Remmel M, et al. Peri-interventional ischemic stroke after coronary angiography: a large-scale nationwide cohort analysis from 2006 to 2020. Eur Heart J. 2022;43(Supplement_2):ehac544.2067. https://doi.org/10.1093/eurheartj/ehac544.2067.

    Article  Google Scholar 

  11. Wexler NZ, Vogrin S, Brennan AL, et al. Adverse impact of peri-procedural stroke in patients who underwent percutaneous coronary intervention. Am J Cardiol. 2022;181:18–24. https://doi.org/10.1016/j.amjcard.2022.06.063.

    Article  PubMed  Google Scholar 

  12. Hs J, Rh C, Lr J, et al. Procedural factors associated with percutaneous coronary intervention-related ischemic stroke. JACC Cardiovasc Interv. 2012;5(2):200–6. https://doi.org/10.1016/j.jcin.2011.10.014.

    Article  Google Scholar 

  13. Didier R, Gaglia MAJ, Koifman E, et al. Cerebrovascular accidents after percutaneous coronary interventions from 2002 to 2014: incidence, outcomes, and associated variables. Am Heart J. 2016;172:80–7. https://doi.org/10.1016/j.ahj.2015.10.019.

    Article  PubMed  Google Scholar 

  14. Mastoris I, Schoos MM, Dangas GD, Mehran R. Stroke after transcatheter aortic valve replacement: incidence, risk factors, prognosis, and preventive strategies. Clin Cardiol. 2014;37(12):756–64. https://doi.org/10.1002/clc.22328.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lund C, Nes RB, Ugelstad TP, et al. Cerebral emboli during left heart catheterization may cause acute brain injury. Eur Heart J. 2005;26(13):1269–75. https://doi.org/10.1093/eurheartj/ehi148.

    Article  PubMed  Google Scholar 

  16. Fernández-Friera L, Peñalvo JL, Fernández-Ortiz A, et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort. Circulation. 2015;131(24):2104–13. https://doi.org/10.1161/CIRCULATIONAHA.114.014310.

    Article  PubMed  Google Scholar 

  17. Devgun JK, Gul S, Mohananey D, et al. Cerebrovascular events after cardiovascular procedures: risk factors, recognition, and prevention strategies. J Am Coll Cardiol. 2018;71(17):1910–20. https://doi.org/10.1016/j.jacc.2018.02.065.

    Article  PubMed  Google Scholar 

  18. Keeley EC, Grines CL. Scraping of aortic debris by coronary guiding catheters: a prospective evaluation of 1,000 cases. J Am Coll Cardiol. 1998;32(7):1861–5. https://doi.org/10.1016/s0735-1097(98)00497-5.

    Article  CAS  PubMed  Google Scholar 

  19. Vlastra W, Jimenez-Quevedo P, Tchétché D, et al. Predictors, incidence, and outcomes of patients undergoing transfemoral transcatheter aortic valve implantation complicated by stroke. Circ Cardiovasc Interv. 2019;12(3):e007546. https://doi.org/10.1161/CIRCINTERVENTIONS.118.007546.

    Article  PubMed  Google Scholar 

  20. Kido DK, King PD, Manzione JV, Simon JH. The role of catheters and guidewires in the production of angiographic thromboembolic complications. Invest Radiol. 1988;23(Suppl 2):S359-65. https://doi.org/10.1097/00004424-198811002-00009.

    Article  PubMed  Google Scholar 

  21. Formanek G, Frech RS, Amplatz K. Arterial thrombus formation during clinical percutaneous catheterization. Circulation. 1970;41(5):833–9. https://doi.org/10.1161/01.CIR.41.5.833.

    Article  CAS  PubMed  Google Scholar 

  22. Berge E, Whiteley W, Audebert H, et al. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur Stroke J. 2021;6(1):I–LXII. https://doi.org/10.1177/2396987321989865.

    Article  PubMed  PubMed Central  Google Scholar 

  23. •• Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke. Stroke. 2019;50(12):e344–418. https://doi.org/10.1161/STR.0000000000000211. This guideline is highly important as it does not specify management approaches specific to CAAIS.

    Article  PubMed  Google Scholar 

  24. Turc G, Bhogal P, Fischer U, et al. European Stroke Organisation (ESO) – European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on mechanical thrombectomy in acute ischaemic stroke endorsed by Stroke Alliance for Europe (SAFE). Eur Stroke J. 2019;4(1):6–12. https://doi.org/10.1177/2396987319832140.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Khatri P, Taylor RA, Palumbo V, et al. The safety and efficacy of thrombolysis for strokes after cardiac catheterization. J Am Coll Cardiol. 2008;51(9):906–11. https://doi.org/10.1016/j.jacc.2007.09.068.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hacke W, Kaste M, Fieschi C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274(13):1017–25.

    Article  CAS  PubMed  Google Scholar 

  27. Tissue plasminogen activator for acute ischemic stroke. New England Journal of Medicine. 1995;333(24):1581–8. https://doi.org/10.1056/NEJM199512143332401.

    Article  Google Scholar 

  28. Hacke W, Kaste M, Fieschi C, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet. 1998;352(9136):1245–51. https://doi.org/10.1016/s0140-6736(98)08020-9.

    Article  CAS  PubMed  Google Scholar 

  29. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS Study: a randomized controlled trial. Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke. JAMA. 1999;282(21):2019–26. https://doi.org/10.1001/jama.282.21.2019.

    Article  CAS  PubMed  Google Scholar 

  30. Clark WM, Albers GW, Madden KP, Hamilton S. The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study Thromblytic therapy in acute ischemic stroke study investigators. Stroke. 2000;31(4):811–6. https://doi.org/10.1161/01.str.31.4.811.

    Article  CAS  PubMed  Google Scholar 

  31. Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7(4):299–309. https://doi.org/10.1016/S1474-4422(08)70044-9.

    Article  PubMed  Google Scholar 

  32. Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29. https://doi.org/10.1056/NEJMoa0804656.

    Article  CAS  PubMed  Google Scholar 

  33. Sandercock P, Wardlaw JM, Lindley RI, et al. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. Lancet. 2012;379(9834):2352–63. https://doi.org/10.1016/S0140-6736(12)60768-5.

    Article  CAS  PubMed  Google Scholar 

  34. Malhotra K, Katsanos AH, Goyal N, et al. Safety and efficacy of dual antiplatelet pretreatment in patients with ischemic stroke treated with IV thrombolysis: a systematic review and meta-analysis. Neurology. 2020;94(7):e657–66. https://doi.org/10.1212/WNL.0000000000008961.

    Article  PubMed  Google Scholar 

  35. Luo S, Zhuang M, Zeng W, Tao J. Intravenous thrombolysis for acute ischemic stroke in patients receiving antiplatelet therapy: a systematic review and meta-analysis of 19 studies. J Am Heart Assoc. 2023;5(5):e003242. https://doi.org/10.1161/JAHA.116.003242.

    Article  Google Scholar 

  36. Tsivgoulis G, Katsanos AH, Zand R, et al. Antiplatelet pretreatment and outcomes in intravenous thrombolysis for stroke: a systematic review and meta-analysis. J Neurol. 2017;264(6):1227–35. https://doi.org/10.1007/s00415-017-8520-1.

    Article  CAS  PubMed  Google Scholar 

  37. Ranasinghe T, Mays T, Quedado J, Adcock A. Thrombolysis following heparin reversal with protamine sulfate in acute ischemic stroke: case series and literature review. J Stroke Cerebrovasc Dis. 2019;28(10):104283. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.06.041.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Warner DS, Schwartz BG, Babygirija R, et al. Thrombolysis after protamine reversal of heparin for acute ischemic stroke after cardiac catheterization: case report and literature review. Neurologist. 2018;23(6):194–6. https://doi.org/10.1097/NRL.0000000000000204.

    Article  PubMed  Google Scholar 

  39. Robinson TG, Wang X, Arima H, et al. Low- versus standard-dose alteplase in patients on prior antiplatelet therapy. Stroke. 2017;48(7):1877–83. https://doi.org/10.1161/STROKEAHA.116.016274.

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki K, Matsumaru Y, Takeuchi M, et al. Effect of mechanical thrombectomy without vs with intravenous thrombolysis on functional outcome among patients with acute ischemic stroke: the SKIP randomized clinical trial. JAMA. 2021;325(3):244–53. https://doi.org/10.1001/jama.2020.23522.

    Article  PubMed  PubMed Central  Google Scholar 

  41. LeCouffe NE, Kappelhof M, Treurniet KM, et al. A randomized trial of intravenous alteplase before endovascular treatment for stroke. N Engl J Med. 2021;385(20):1833–44. https://doi.org/10.1056/NEJMoa2107727.

    Article  CAS  PubMed  Google Scholar 

  42. Mitchell PJ, Yan B, Churilov L, et al. Endovascular thrombectomy versus standard bridging thrombolytic with endovascular thrombectomy within 4·5 h of stroke onset: an open-label, blinded-endpoint, randomised non-inferiority trial. Lancet. 2022;400(10346):116–25. https://doi.org/10.1016/S0140-6736(22)00564-5.

    Article  CAS  PubMed  Google Scholar 

  43. Fischer U, Kaesmacher J, Strbian D, et al. Thrombectomy alone versus intravenous alteplase plus thrombectomy in patients with stroke: an open-label, blinded-outcome, randomised non-inferiority trial. Lancet. 2022;400(10346):104–15. https://doi.org/10.1016/S0140-6736(22)00537-2.

    Article  CAS  PubMed  Google Scholar 

  44. Yang P, Zhang Y, Zhang L, et al. Endovascular thrombectomy with or without intravenous alteplase in acute stroke. N Engl J Med. 2020;382(21):1981–93. https://doi.org/10.1056/NEJMoa2001123.

    Article  CAS  PubMed  Google Scholar 

  45. Zi W, Qiu Z, Li F, et al. Effect of endovascular treatment alone vs intravenous alteplase plus endovascular treatment on functional independence in patients with acute ischemic stroke: the DEVT randomized clinical trial. JAMA. 2021;325(3):234–43. https://doi.org/10.1001/jama.2020.23523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin CH, Saver JL, Ovbiagele B, Huang WY, Lee M. Endovascular thrombectomy without versus with intravenous thrombolysis in acute ischemic stroke: a non-inferiority meta-analysis of randomized clinical trials. J Neurointerv Surg. 2022;14(3):227 LP – 232. https://doi.org/10.1136/neurintsurg-2021-017667.

    Article  Google Scholar 

  47. Dobrocky T, Piechowiak E, Cianfoni A, et al. Thrombectomy of calcified emboli in stroke. Does histology of thrombi influence the effectiveness of thrombectomy? J Neurointerv Surg. 2018;10(4):345–50. https://doi.org/10.1136/neurintsurg-2017-013226.

    Article  PubMed  Google Scholar 

  48. Maurer CJ, Dobrocky T, Joachimski F, et al. Endovascular thrombectomy of calcified emboli in acute ischemic stroke: a multicenter study. AJNR Am J Neuroradiol. 2020;41(3):464–8. https://doi.org/10.3174/ajnr.A6412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bruggeman AAE, Kappelhof M, Arrarte Terreros N, et al. Endovascular treatment for calcified cerebral emboli in patients with acute ischemic stroke. J Neurosurg. 2021;135(5):1402–12. https://doi.org/10.3171/2020.9.JNS201798.

    Article  PubMed  Google Scholar 

  50. Grand T, Dargazanli C, Papagiannaki C, et al. Benefit of mechanical thrombectomy in acute ischemic stroke related to calcified cerebral embolus. J Neuroradiol. 2022;49(4):317–23. https://doi.org/10.1016/j.neurad.2022.02.006.

    Article  PubMed  Google Scholar 

  51. Jolugbo P, Ariëns RAS. Thrombus composition and efficacy of thrombolysis and thrombectomy in acute ischemic stroke. Stroke. 2021;52(3):1131–42. https://doi.org/10.1161/STROKEAHA.120.032810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chandran V, Pai A, Rao S. Calcified embolism: a rare cause of cerebral infarction. BMJ Case Rep. 2013. https://doi.org/10.1136/bcr-2013-009509.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Di Meglio L, Desilles JP, Ollivier V, et al. Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. Neurology. 2019;93(18):e1686 LP-e1698. https://doi.org/10.1212/WNL.0000000000008395.

    Article  CAS  Google Scholar 

  54. •• Huang J, Killingsworth MC, Bhaskar SMM. Is composition of brain clot retrieved by mechanical thrombectomy associated with stroke aetiology and clinical outcomes in acute ischemic stroke?-a systematic review and meta-analysis. Neurol Int. 2022;14(4):748–70. https://doi.org/10.3390/neurolint14040063. This study is significant as it demonstrates histological evidence of the effect of thrombus composition on the efficacy of intravenous thrombolysis. This supports potentially altered thrombus composition in CAAIS and thus may affect the appropriateness and the overall risk-benefit of intravenous thrombolysis in CAAIS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maekawa K, Shibata M, Nakajima H, et al. Erythrocyte-rich thrombus is associated with reduced number of maneuvers and procedure time in patients with acute ischemic stroke undergoing mechanical thrombectomy. Cerebrovasc Dis Extra. 2018;8(1):39–49. https://doi.org/10.1159/000486042.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ferrante G, Rao SV, Jüni P, et al. Radial versus femoral access for coronary interventions across the entire spectrum of patients with coronary artery disease: a meta-analysis of randomized trials. JACC Cardiovasc Interv. 2016;9(14):1419–34. https://doi.org/10.1016/j.jcin.2016.04.014.

    Article  PubMed  Google Scholar 

  57. Yaghi S, Willey JZ, Cucchiara B, et al. Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2017;48(12):e343–61. https://doi.org/10.1161/STR.0000000000000152.

    Article  PubMed  Google Scholar 

  58. Yan S, Jin X, Zhang X, Zhang S, Liebeskind DS, Lou M. Extensive cerebral microbleeds predict parenchymal haemorrhage and poor outcome after intravenous thrombolysis. J Neurol Neurosurg Psychiatry. 2015;86(11):1267 LP – 1272. https://doi.org/10.1136/jnnp-2014-309857.

    Article  Google Scholar 

  59. Qiu K, Zhao LB, Xu XQ, et al. Non-negligible clinical relevance of haemorrhagic transformation after endovascular thrombectomy with successful reperfusion in acute ischaemic stroke. Clin Radiol. 2022;77(1):e99–105. https://doi.org/10.1016/j.crad.2021.10.005.

    Article  CAS  PubMed  Google Scholar 

  60. Whiteley WN, Slot KB, Fernandes P, Sandercock P, Wardlaw J. risk factors for intracranial hemorrhage in acute ischemic stroke patients treated with recombinant tissue plasminogen activator. Stroke. 2012;43(11):2904–9. https://doi.org/10.1161/STROKEAHA.112.665331.

    Article  CAS  PubMed  Google Scholar 

  61. Hamon M, Baron JC, Viader F, Hamon M. Periprocedural stroke and cardiac catheterization. Circulation. 2008;118(6):678–83. https://doi.org/10.1161/CIRCULATIONAHA.108.784504.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Gin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent Statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gin, J., Yeoh, J., Thijs, V. et al. Coronary Angiography Complicated by Acute Ischaemic Stroke and the Use of Thrombolysis: a Cardiology Perspective and Narrative Review of Current Literature. Curr Cardiol Rep 25, 1499–1512 (2023). https://doi.org/10.1007/s11886-023-01962-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01962-y

Keywords

Navigation