Skip to main content
Log in

Noninvasive Multimodality Imaging for the Assessment of Anomalous Coronary Artery

  • Structural Heart Disease (S Vakamudi, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Anomalous aortic origin of a coronary artery (AAOCA) is a rare congenital coronary anomaly with the potential to cause myocardial ischemia and adverse cardiac events. The presence of AAOCA anatomy itself does not necessarily implicate a need for revascularization. Therefore, the purpose of this review is to assess how noninvasive comprehensive anatomic- and physiologic evaluation may guide patient management.

Recent Findings

The assessment of AAOCA includes an accurate description of the anomalous origin/vessel course including anatomical high-risk features such as a slit-like ostium, proximal narrowing, elliptic vessel shape, acute take-off angle, intramural course, and possible concomitant coronary atherosclerosis and hemodynamics. Various cardiac imaging modalities offer unique advantages and capabilities in visualizing these anatomical and functional aspects of AAOCA.

Summary

This review explored the role of noninvasive multimodality imaging in the characterization of AAOCA by highlighting the strengths, limitations, and potential applications of the current different cardiac imaging methods, with a focus on the pathophysiology of myocardial ischemia and stress testing protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bogers AJ, Gittenberger-de Groot AC, Poelmann RE, Péault BM, Huysmans HA. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol. 1989;180:437–41.

    Article  CAS  Google Scholar 

  2. Pérez-Pomares JM, de la Pompa JL, Franco D, Henderson D, Ho SY, Houyel L, et al. Congenital coronary artery anomalies: a bridge from embryology to anatomy and pathophysiology–a position statement of the development, anatomy, and pathology ESC Working Group. Cardiovasc Res. 2016;109:204–16.

    Article  PubMed  Google Scholar 

  3. Angelini P. Coronary artery anomalies–current clinical issues: definitions, classification, incidence, clinical relevance, and treatment guidelines. Tex Heart Inst J. 2002;29:271–8.

    PubMed  PubMed Central  Google Scholar 

  4. • Bigler MR, Ashraf A, Seiler C, Praz F, Ueki Y, Windecker S, et al. Hemodynamic relevance of anomalous coronary arteries originating from the opposite sinus of Valsalva-in search of the evidence. Front Cardiovasc Med. 2021;7. A detailed discussion is provided on the complex interaction between fixed and dynamic elements in AAOCA, which may lead to hemodynamic significance.

  5. Yamanaka O, Hobbs RE. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn. 1990;21:28–40.

    Article  CAS  PubMed  Google Scholar 

  6. Cheezum MK, Liberthson RR, Shah NR, Villines TC, O’Gara PT, Landzberg MJ, et al. Anomalous aortic origin of a coronary artery from the inappropriate sinus of Valsalva. J Am Coll Cardiol. 2017;69:1592–608.

    Article  PubMed  Google Scholar 

  7. Gräni C, Benz DC, Schmied C, Vontobel J, Possner M, Clerc OF, et al. Prevalence and characteristics of coronary artery anomalies detected by coronary computed tomography angiography in 5634 consecutive patients in a single centre in Switzerland. Swiss Med Wkly. 2016;146.

  8. Eckart RE, Scoville SL, Campbell CL, Shry EA, Stajduhar KC, Potter RN, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004;141:829–34.

    Article  PubMed  Google Scholar 

  9. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115:1296–305.

    Article  PubMed  Google Scholar 

  10. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35:1493–501.

    Article  CAS  PubMed  Google Scholar 

  11. Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, et al. 2018 AHA/ACC guideline for the management of adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e637–97.

    PubMed  Google Scholar 

  12. Baumgartner H, De Backer J, Babu-Narayan SV, Budts W, Chessa M, Diller G-P, et al. 2020 ESC Guidelines for the management of adult congenital heart disease: the Task Force for the management of adult congenital heart disease of the European Society of Cardiology (ESC). Eur Heart J. 2020.

  13. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. ESC Guidelines for the diagnosis and management of chronic coronary syndromes: the Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2019;41:407–77.

    Google Scholar 

  14. Angelini P, Vidovich MI, Lawless CE, Elayda MA, Lopez JA, Wolf D, et al. Preventing sudden cardiac death in athletes: in search of evidence-based, cost-effective screening. Tex Heart Inst J. 2013;40:148–55.

    PubMed  PubMed Central  Google Scholar 

  15. Angelini P, Uribe C. Anatomic spectrum of left coronary artery anomalies and associated mechanisms of coronary insufficiency. Catheter Cardiovasc Interv. 2018;92:313–21.

    Article  PubMed  Google Scholar 

  16. Grani C, Buechel RR, Kaufmann PA, Kwong RY. Multimodality imaging in individuals with anomalous coronary arteries. JACC Cardiovasc Imaging. 2017;10:471–81.

    Article  PubMed  Google Scholar 

  17. Angelini P and Uribe C. Critical update and discussion of the prevalence, nature, mechanisms of action, and treatment options in potentially serious coronary anomalies. Trends Cardiovasc Med. 2022.

  18. Brothers JA, Whitehead KK, Keller MS, Fogel MA, Paridon SM, Weinberg PM, et al. Cardiac MRI and CT: differentiation of normal ostium and intraseptal course from slitlike ostium and interarterial course in anomalous left coronary artery in children. AJR Am J Roentgenol. 2015;204:W104–9.

    Article  PubMed  Google Scholar 

  19. Jegatheeswaran A, Devlin PJ, McCrindle BW, Williams WG, Jacobs ML, Blackstone EH, et al. Features associated with myocardial ischemia in anomalous aortic origin of a coronary artery: a Congenital Heart Surgeons’ Society study. J Thorac Cardiovasc Surg. 2019;158:822-834.e3.

    Article  PubMed  Google Scholar 

  20. Davies JE, Burkhart HM, Dearani JA, Suri RM, Phillips SD, Warnes CA, et al. Surgical management of anomalous aortic origin of a coronary artery. Ann Thoracic Surg. 2009;88:844–7; discussion 847–8.

  21. Davis JA, Cecchin F, Jones TK, Portman MA. Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol. 2001;37:593–7.

    Article  CAS  PubMed  Google Scholar 

  22. Gräni C, Benz DC, Schmied C, Vontobel J, Mikulicic F, Possner M, et al. Hybrid CCTA/SPECT myocardial perfusion imaging findings in patients with anomalous origin of coronary arteries from the opposite sinus and suspected concomitant coronary artery disease. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology. 2017;24:226–34.

    Article  PubMed  Google Scholar 

  23. Ripley DP, Saha A, Teis A, Uddin A, Bijsterveld P, Kidambi A, et al. The distribution and prognosis of anomalous coronary arteries identified by cardiovascular magnetic resonance: 15 year experience from two tertiary centres. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2014;16:34.

    Article  PubMed  Google Scholar 

  24. Cheezum MK, Ghoshhajra B, Bittencourt MS, Hulten EA, Bhatt A, Mousavi N, et al. Anomalous origin of the coronary artery arising from the opposite sinus: prevalence and outcomes in patients undergoing coronary CTA. Eur Heart J Cardiovasc Imaging. 2017;18:224–35.

    Article  PubMed  Google Scholar 

  25. Taylor AJ, Rogan KM, Virmani R. Sudden cardiac death associated with isolated congenital coronary artery anomalies. J Am Coll Cardiol. 1992;20:640–7.

    Article  CAS  PubMed  Google Scholar 

  26. Cheitlin MD, De Castro CM, McAllister HA. Sudden death as a complication of anomalous left coronary origin from the anterior sinus of Valsalva. A not-so-minor congenital anomaly Circulation. 1974;50:780–7.

    CAS  PubMed  Google Scholar 

  27. Taylor AJ, Byers JP, Cheitlin MD, Virmani R. Anomalous right or left coronary artery from the contralateral coronary sinus: “high-risk” abnormalities in the initial coronary artery course and heterogeneous clinical outcomes. Am Heart J. 1997;133:428–35.

    Article  CAS  PubMed  Google Scholar 

  28. Diao KY, Zhao Q, Gao Y, Shi K, Ma M, Xu HY, et al. Prognostic value of dual-source computed tomography (DSCT) angiography characteristics in anomalous coronary artery from the opposite sinus (ACAOS) patients: a large-scale retrospective study. BMC Cardiovasc Disord. 2020;20:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Angelini P, Uribe C, Monge J, Tobis JM, Elayda MA, Willerson JT. Origin of the right coronary artery from the opposite sinus of Valsalva in adults: characterization by intravascular ultrasonography at baseline and after stent angioplasty. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions. 2015;86:199–208.

    Article  Google Scholar 

  30. Zhang LJ, Wu SY, Huang W, Zhou CS, Lu GM. Anomalous origin of the right coronary artery originating from the left coronary sinus of Valsalva with an interarterial course: diagnosis and dynamic evaluation using dual-source computed tomography. J Comput Assist Tomogr. 2009;33:348–53.

    Article  PubMed  Google Scholar 

  31. Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation. 1995;92:3183–93.

  32. Nasis A, Machado C, Cameron JD, Troupis JM, Meredith IT, Seneviratne SK. Anatomic characteristics and outcome of adults with coronary arteries arising from an anomalous location detected with coronary computed tomography angiography. Int J Cardiovasc Imaging. 2015;31:181–91.

    Article  PubMed  Google Scholar 

  33. Virmani R, Chun PK, Goldstein RE, Robinowitz M, McAllister HA. Acute takeoffs of the coronary arteries along the aortic wall and congenital coronary ostial valve-like ridges: association with sudden death. J Am Coll Cardiol. 1984;3:766–71.

    Article  CAS  PubMed  Google Scholar 

  34. Angelini P, Flamm SD. Newer concepts for imaging anomalous aortic origin of the coronary arteries in adults. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions. 2007;69:942–54.

    Article  Google Scholar 

  35. Angelini P, Uribe C. Symptomatic right coronary anomaly with dynamic systolic intramural obliteration and isolated right ventricular ischemia. Catheter Cardiovasc Interv. 2019;93:445–7.

    Article  PubMed  Google Scholar 

  36. Angelini P, Velasco JA, Ott D, Khoshnevis GR. Anomalous coronary artery arising from the opposite sinus: descriptive features and pathophysiologic mechanisms, as documented by intravascular ultrasonography. J Invasive Cardiol. 2003;15:507–14.

    PubMed  Google Scholar 

  37. Lee SE, Yu CW, Park K, Park KW, Suh JW, Cho YS, et al. Physiological and clinical relevance of anomalous right coronary artery originating from left sinus of Valsalva in adults. Heart (British Cardiac Society). 2016;102:114–9.

    CAS  PubMed  Google Scholar 

  38. Boler AN, Hilliard AA, Gordon BM. Functional assessment of anomalous right coronary artery using fractional flow reserve: an innovative modality to guide patient management. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions. 2017;89:316–20.

    Article  Google Scholar 

  39. Tsujita K, Maehara A, Mintz GS, Franklin-Bond T, Mehran R, Stone GW,et al. In vivo intravascular ultrasonic assessment of anomalous right coronary artery arising from left coronary sinus. Am J Cardiol. 2009;103:747–51.

    Article  PubMed  Google Scholar 

  40. de Oliveira DM, Gomes V, Caramori P. Intravascular ultrasound and pharmacological stress test to evaluate the anomalous origin of the right coronary artery. J Invasive Cardiol. 2012;24:E131–4.

    PubMed  Google Scholar 

  41. Mitchell JH, Haskell W, Snell P, Van Camp SP. Task Force 8: classification of sports. J Am Coll Cardiol. 2005;45:1364–7.

    Article  PubMed  Google Scholar 

  42. Gräni C, Chappex N, Fracasso T, Vital C, Kellerhals C, Schmied C, et al. Sports-related sudden cardiac death in Switzerland classified by static and dynamic components of exercise. Eur J Prev Cardiol. 2016;23:1228–36.

    Article  PubMed  Google Scholar 

  43. Brothers J, Carter C, McBride M, Spray T, Paridon S. Anomalous left coronary artery origin from the opposite sinus of Valsalva: evidence of intermittent ischemia. J Thorac Cardiovasc Surg. 2010;140:e27–9.

    Article  PubMed  Google Scholar 

  44. Sachdeva S, Frommelt MA, Mitchell ME, Tweddell JS, Frommelt PC. Surgical unroofing of intramural anomalous aortic origin of a coronary artery in pediatric patients: single-center perspective. J Thorac Cardiovasc Surg. 2018;155:1760–8.

    Article  PubMed  Google Scholar 

  45. Pelliccia A. Congenital coronary artery anomalies in young patients: new perspectives for timely identification. J Am Coll Cardiol. 2001;37:598–600.

    Article  CAS  PubMed  Google Scholar 

  46. Cheitlin MD, MacGregor J. Congenital anomalies of coronary arteries: role in the pathogenesis of sudden cardiac death. Herz. 2009;34:268–79.

    Article  PubMed  Google Scholar 

  47. Lim MJ, Forsberg MJ, Lee R, Kern MJ. Hemodynamic abnormalities across an anomalous left main coronary artery assessment: evidence for a dynamic ostial obstruction. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions. 2004;63:294–8.

    Article  Google Scholar 

  48. Finocchiaro G, Behr ER, Tanzarella G, Papadakis M, Malhotra A, Dhutia H, et al. Anomalous coronary artery origin and sudden cardiac death: clinical and pathological insights from a national pathology registry. JACC Clin Electrophysiol. 2019;5:516–22.

    Article  PubMed  Google Scholar 

  49. Romp RL, Herlong JR, Landolfo CK, Sanders SP, Miller CE, Ungerleider RM, et al. Outcome of unroofing procedure for repair of anomalous aortic origin of left or right coronary artery. Ann Thoracic Surg. 2003;76:589–95; discussion 595–6.

  50. Uebleis C, Groebner M, von Ziegler F, Becker A, Rischpler C, Tegtmeyer R, et al. Combined anatomical and functional imaging using coronary CT angiography and myocardial perfusion SPECT in symptomatic adults with abnormal origin of a coronary artery. Int J Cardiovasc Imaging. 2012;28:1763–74.

    Article  CAS  PubMed  Google Scholar 

  51. De Luca L, Bovenzi F, Rubini D, Niccoli-Asabella A, Rubini G, De Luca I. Stress-rest myocardial perfusion SPECT for functional assessment of coronary arteries with anomalous origin or course. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2004;45:532–6.

    PubMed  Google Scholar 

  52. Doan TT, Sachdeva S, Bonilla-Ramirez C, Reaves-O’Neal DL, Masand P, Mery CM, et al. Ischemia in anomalous aortic origin of a right coronary artery: large pediatric cohort medium-term outcomes. Circ Cardiovasc Interventions. 2023;16:e012631.

  53. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol. 2010;56:177–84.

  54. Bigler MR, Stoller M, Praz F, Siontis GCM, Grossenbacher R, Tschannen C, et al. Functional assessment of myocardial ischaemia by intracoronary ECG. Open Heart. 2021;8: e001447.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Agrawal H, Wilkinson JC, Noel CV, Qureshi AM, Masand PM, Mery CM, et al. Impaired myocardial perfusion on stress CMR correlates with invasive FFR in children with coronary anomalies. J Invasive Cardiol. 2021;33:E45-e51.

    PubMed  Google Scholar 

  56. Tessitore A, Caiffa T, Bobbo M, D’Agata Mottolese B, Barbi E, Chicco D. Anomalous aortic origin of coronary artery: for a challenging diagnosis, a transthoracic echocardiogram is recommended. Acta Paediatr. 2022;111:265–8.

    Article  PubMed  Google Scholar 

  57. Fernandes F, Alam M, Smith S, Khaja F. The role of transesophageal echocardiography in identifying anomalous coronary arteries. Circulation. 1993;88:2532–40.

    Article  CAS  PubMed  Google Scholar 

  58. Zeppilli P, dello Russo A, Santini C, Palmieri V, Natale L, Giordano A, et al. In vivo detection of coronary artery anomalies in asymptomatic athletes by echocardiographic screening. Chest. 1998;114:89–93.

    Article  CAS  PubMed  Google Scholar 

  59. Lepper W, Belcik T, Wei K, Lindner JR, Sklenar J, Kaul S. Myocardial Contrast Echocardiography. Circulation. 2004;109:3132–5.

    Article  PubMed  Google Scholar 

  60. Vogel R, Indermühle A, Reinhardt J, Meier P, Siegrist PT, Namdar M, et al. The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation. J Am Coll Cardiol. 2005;45:754–62.

    Article  PubMed  Google Scholar 

  61. Lorber R, Srivastava S, Wilder TJ, McIntyre S, DeCampli WM, Williams WG, et al. Anomalous aortic origin of coronary arteries in the young: echocardiographic evaluation with surgical correlation. JACC Cardiovasc Imaging. 2015;8:1239–49.

    Article  PubMed  Google Scholar 

  62. Zeltser I, Cannon B, Silvana L, Fenrich A, George J, Schleifer J, et al. Lessons learned from preparticipation cardiovascular screening in a state funded program. Am J Cardiol. 2012;110:902–8.

    Article  PubMed  Google Scholar 

  63. Ichikawa M, Sato Y, Komatsu S, Hirayama A, Kodama K, Saito S. Multislice computed tomographic findings of the anomalous origins of the right coronary artery: evaluation of possible causes of myocardial ischemia. Int J Cardiovasc Imaging. 2007;23:353–60.

    Article  PubMed  Google Scholar 

  64. Graidis C, Dimitriadis D, Karasavvidis V, Dimitriadis G, Argyropoulou E, Economou F, et al. Prevalence and characteristics of coronary artery anomalies in an adult population undergoing multidetector-row computed tomography for the evaluation of coronary artery disease. BMC Cardiovasc Disord. 2015;15:112.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gentile F, Castiglione V, De Caterina R. Coronary Artery Anomalies. Circulation. 2021;144:983–96.

    Article  CAS  PubMed  Google Scholar 

  66. Palmieri V, Gervasi S, Bianco M, Cogliani R, Poscolieri B, Cuccaro F, et al. Anomalous origin of coronary arteries from the “wrong” sinus in athletes: diagnosis and management strategies. Int J Cardiol. 2018;252:13–20.

    Article  PubMed  Google Scholar 

  67. Salman R, More SR, Ferreira Botelho MP, Ketwaroo PM, Masand PM, Molossi S, et al. Detection of anomalous aortic origin of a coronary artery (AAOCA) by echocardiogram: when does computed tomographic angiography add value? Clin Imaging. 2023;95:74–9.

    Article  PubMed  Google Scholar 

  68. Leipsic J, Yang TH, Thompson A, Koo BK, Mancini GB, Taylor C, et al. CT angiography (CTA) and diagnostic performance of noninvasive fractional flow reserve: results from the Determination of Fractional Flow Reserve by Anatomic CTA (DeFACTO) study. AJR Am J Roentgenol. 2014;202:989–94.

    Article  PubMed  Google Scholar 

  69. Ihdayhid AR, Norgaard BL, Gaur S, Leipsic J, Nerlekar N, Osawa K, et al. Prognostic value and risk continuum of noninvasive fractional flow reserve derived from coronary CT angiography. Radiology. 2019;292:343–51.

    Article  PubMed  Google Scholar 

  70. Tang CX, Lu MJ, Schoepf JU, Tesche C, Bauer M, Nance J, et al. Coronary Computed Tomography Angiography-Derived Fractional Flow Reserve in Patients with Anomalous Origin of the Right Coronary Artery from the Left Coronary Sinus. Korean J Radiol. 2020;21:192–202.

    Article  PubMed  Google Scholar 

  71. Bigler MR, Stark AW, Giannopoulos AA, Huber AT, Siepe M, Kadner A, et al. Coronary CT FFR vs invasive adenosine and dobutamine FFR in a right anomalous coronary artery. JACC Case Rep. 2022;4:929–33.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kawaji T, Shiomi H, Shizuta S, Kimura T. Diagnosis of functional ischemia in a right coronary artery with anomalous aortic origin. J Cardiovasc Comput Tomogr. 2016;10:188–90.

    Article  PubMed  Google Scholar 

  73. Tahir H, Ahmad S, Awan MU, Omar B, Glass J, Cole J. Anomalous origin of left anterior descending artery and left circumflex artery from right coronary sinus with malignant left anterior descending artery course: role of coronary CT angiography derived fractional flow reserve in decision making. Cureus. 2018;10: e3220.

    PubMed  PubMed Central  Google Scholar 

  74. Miki T, Miyoshi T, Watanabe A, Osawa K, Amioka N, Ito H. Anomalous aortic origin of the right coronary artery with functional ischemia determined with fractional flow reserve derived from computed tomography. Clinical case reports. 2018;6:1371–2.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Adjedj J, Hyafil F, Fretay XHd, Dupouy P, Juliard JM, Ou P, et al. Physiological evaluation of anomalous aortic origin of a coronary artery using computed tomography–derived fractional flow reserve. J Am Heart Assoc. 2021;10:e018593.

  76. Jiang MX, Khan MO, Ghobrial J, Rogers IS, Pettersson GB, Blackstone EH, et al. Patient-specific fluid–structure simulations of anomalous aortic origin of right coronary arteries. JTCVS Techniques. 2022;13:144–62.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ferrag W, Scalbert F, Adjedj J, Dupouy P, Ou P, Juliard J-M, et al. Role of FFR-CT for the evaluation of patients with anomalous aortic origin of coronary artery. JACC: Cardiovasc Imaging. 2021;14:1074–1076.

  78. Benz DC, Gräni C, Hirt Moch B, Mikulicic F, Vontobel J, Fuchs TA, Stehli J, et al. Minimized radiation and contrast agent exposure for coronary computed tomography angiography: first clinical experience on a latest generation 256-slice scanner. Acad Radiol. 2016;23:1008–14.

    Article  PubMed  Google Scholar 

  79. Seitun S, De Lorenzi C, Cademartiri F, Buscaglia A, Travaglio N, Balbi M, et al. CT myocardial perfusion imaging: a new frontier in cardiac imaging. Biomed Res Int. 2018;2018:7295460.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Danad I, Szymonifka J, Schulman-Marcus J, Min JK. Static and dynamic assessment of myocardial perfusion by computed tomography. Eur Heart J Cardiovasc Imaging. 2016;17:836–44.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Keir M, Spears D, Caldarone C, Crean AM. Proving the innocence of a “malignant” coronary artery: calling dobutamine stress CT for the defence! J Cardiovasc Comput Tomogr. 2017;11:68–9.

    Article  PubMed  Google Scholar 

  82. Linsen PVM, Kofflard MJM, Lam SW, Kock M. First in humans: dobutamine stress cardiac computed tomography to evaluate dynamic compression of an anomalous left coronary artery. Coron Artery Dis. 2018;29:607–8.

    Article  PubMed  Google Scholar 

  83. Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J. 2010;31:794–805.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Angelini P, Cheong BY, Lenge De Rosen VV, Lopez JA, Uribe C, Masso AH, et al. Magnetic resonance imaging-based screening study in a general population of adolescents. J Am Coll Cardiol. 2018;71:579–580.

  85. Angelini P, Cheong BY, Lenge De Rosen VV, Lopez A, Uribe C, Masso AH, Ali SW, et al. High-risk cardiovascular conditions in sports-related sudden death: prevalence in 5,169 schoolchildren screened via cardiac magnetic resonance. Texas Heart Inst J. 2018;45:205–213.

  86. Gräni C, Benz DC, Gupta S, Windecker S, Kwong RY. Sudden cardiac death in ischemic heart disease: from imaging arrhythmogenic substrate to guiding therapies. JACC Cardiovasc Imaging. 2020;13:2223–38.

    Article  PubMed  Google Scholar 

  87. Antiochos P, Ge Y, Heydari B, Steel K, Bingham S, Abdullah SM, et al. Prognostic value of stress cardiac magnetic resonance in patients with known coronary artery disease. JACC Cardiovasc Imaging. 2022;15:60–71.

    Article  PubMed  Google Scholar 

  88. Paetsch I, Jahnke C, Wahl A, Gebker R, Neuss M, Fleck E, et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation. 2004;110:835–42.

    Article  CAS  PubMed  Google Scholar 

  89. Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, et al. Prognostic value of cardiac magnetic resonance stress tests. Circulation. 2007;115:1769–76.

    Article  PubMed  Google Scholar 

  90. •• Molossi S, Doan T, Sachdeva S. Anomalous coronary arteries: a state-of-the-art approacH. Cardiol Clin. 2023;41:51–69. A state-of-the-art approach to AAOCA is presented, emphasizing the pediatric and teenage populations.

    Article  PubMed  Google Scholar 

  91. Wahl A, Paetsch I, Gollesch A, Roethemeyer S, Foell D, Gebker R, et al. Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases. Eur Heart J. 2004;25:1230–6.

    Article  PubMed  Google Scholar 

  92. Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999;99:763–70.

    Article  CAS  PubMed  Google Scholar 

  93. Strigl S, Beroukhim R, Valente AM, Annese D, Harrington JS, Geva T, et al. Feasibility of dobutamine stress cardiovascular magnetic resonance imaging in children. J Magn Reson Imaging. 2009;29:313–9.

    Article  PubMed  Google Scholar 

  94. Molossi S, Agrawal H, Mery CM, Krishnamurthy R, Masand P, Sexson Tejtel SK, et al. Outcomes in anomalous aortic origin of a coronary artery following a prospective standardized approach. Circ Cardiovasc Interv. 2020;13: e008445.

    Article  PubMed  Google Scholar 

  95. Hamirani YS, Kramer CM. Cardiac MRI assessment of myocardial perfusion. Future Cardiol. 2014;10:349–58.

    Article  CAS  PubMed  Google Scholar 

  96. Patel AR, Salerno M, Kwong RY, Singh A, Heydari B, Kramer CM. Stress cardiac magnetic resonance myocardial perfusion imaging: JACC review topic of the week. J Am Coll Cardiol. 2021;78:1655–68.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Engblom H, Xue H, Akil S, Carlsson M, Hindorf C, Oddstig J, et al. Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography. J Cardiovasc Magn Reson. 2017;19:78.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kwong RY and Chandrashekhar Y. The higher you climb, the better the view: quantitative CMR perfusion mapping for CAD. JACC: Cardiovasc Imaging. 2020;13:2700–2702.

  99. • Doan TT, Molossi S, Sachdeva S, Wilkinson JC, Loar RW, Weigand JD, et al. Dobutamine stress cardiac MRI is safe and feasible in pediatric patients with anomalous aortic origin of a coronary artery (AAOCA). Int J Cardiol. 2021;334:42–8 Dobutamine stress cardiac MRI is proven safe and effective for evaluating myocardial ischemia in pediatric AAOCA patients, providing crucial guidance for their care.

    Article  PubMed  Google Scholar 

  100. Bigler MR, Seiler C, Räber L, Gräni C. Wolf in sheep’s clothing - the false sense of security in patients with anomalous aortic origin of a coronary artery undergoing submaximal stress testing. J Invasive Cardiol. 2021;33:E396-e397.

    PubMed  Google Scholar 

  101. Abbott BG, Case JA, Dorbala S, Einstein AJ, Galt JR, Pagnanelli R, et al. Contemporary cardiac SPECT imaging—innovations and best practices: an information statement from the American Society of Nuclear Cardiology. Circ: Cardiovasc Imaging. 2018;11:e000020.

  102. Souza ACdAHd, Harms HJ, Martell L, Bibbo C, Harrington M, Sullivan K, et al. Accuracy and reproducibility of myocardial blood flow quantification by single photon emission computed tomography imaging in patients with known or suspected coronary artery disease. Circ: Cardiovasc Imaging. 2022;15:e013987.

  103. Gräni C, Benz DC, Possner M, Clerc OF, Mikulicic F, Vontobel J, et al. Fused cardiac hybrid imaging with coronary computed tomography angiography and positron emission tomography in patients with complex coronary artery anomalies. Congenit Heart Dis. 2017;12:49–57.

    Article  PubMed  Google Scholar 

  104. Bigler MR, Ueki Y, Otsuka T, Huber AT, Kadner A, Räber L, et al. Discrepancy between SPECT and dobutamine FFR in right anomalous coronary artery undergoing unroofing. Ann Thoracic Surg. 2020.

  105. Alam L, Omar AMS, Patel KK. Improved performance of PET myocardial perfusion imaging compared to SPECT in the evaluation of suspected CAD. Curr Cardiol Rep. 2023;25:281–93.

    Article  PubMed  Google Scholar 

  106. Klein R, Celiker-Guler E, Rotstein BH, deKemp RA. PET and SPECT tracers for myocardial perfusion imaging. Semin Nucl Med. 2020;50:208–18.

    Article  PubMed  Google Scholar 

  107. Aggarwal NR, Drozdova A, Askew JW 3rd, Kemp BJ, Chareonthaitawee P. Feasibility and diagnostic accuracy of exercise treadmill nitrogen-13 ammonia PET myocardial perfusion imaging of obese patients. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology. 2015;22:1273–80.

    Article  PubMed  Google Scholar 

  108. Chow BJ, Beanlands RS, Lee A, DaSilva JN, deKemp RA, Alkahtani A, et al. Treadmill exercise produces larger perfusion defects than dipyridamole stress N-13 ammonia positron emission tomography. J Am Coll Cardiol. 2006;47:411–6.

    Article  PubMed  Google Scholar 

  109. Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55:248–55.

    Article  PubMed  Google Scholar 

  110. Wang TKM, Dong T, Cremer PC, Najm H, Pettersson G, Jaber WA. Utility of positron emission tomography myocardial perfusion imaging for identifying ischemia and guiding treatment in patients with anomalous coronary arteries. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology. 2023;30:781–9.

    Article  PubMed  Google Scholar 

  111. •• Bigler MR, Kadner A, Räber L, Ashraf A, Windecker S, Siepe M, et al. Therapeutic management of anomalous coronary arteries originating from the opposite sinus of Valsalva: current evidence, proposed approach, and the unknowing. J Am Heart Assoc. 2022;11: e027098. Proposed diagnostic and therapeutic management of AAOCA with a focus on the middle-aged/older population.

Download references

Funding

Dr. Gräni has received funding support for this work from the Swiss National Foundation (Grant Number 200871: Noninvasive anatomical assessment for ruling out hemodynamically relevant coronary artery anomalies—A comparison of coronary-CT to invasive coronary angiography [NARCO]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Y. Kwong.

Ethics declarations

Conflict of Interest

Dr. Kwong has received research support from Bristol Myers Squibb, Alnylam Pharmaceuticals, Epirium Bio, and Bayer AG, outside of the submitted work. Dr. Gräni received funding from Innosuisse, CAIM, and GAMBIT foundations, outside of the submitted work. The other authors report that they have no relationships relevant to the contents of this paper to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gräni, C., Bigler, M.R. & Kwong, R.Y. Noninvasive Multimodality Imaging for the Assessment of Anomalous Coronary Artery. Curr Cardiol Rep 25, 1233–1246 (2023). https://doi.org/10.1007/s11886-023-01948-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01948-w

Keywords

Navigation