Skip to main content

Advertisement

Log in

Efficacy of Bioactive Compounds in the Regulation of Metabolism and Pathophysiology in Cardiovascular Diseases

  • New Therapies for Cardiovascular Disease (AA Bavry and M Massoomi, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

An imbalance in reactive oxygen species (ROS) homeostasis can wreak damage to metabolic and physiological processes which can eventually lead to an advancement in cardiovascular diseases (CVD). Mitochondrial dysfunction is considered as a key source of ROS. The purpose of the current review is to concisely discuss the role of bioactive compounds in the modulation of cardiovascular metabolism and their potential application in the management of cardiovascular diseases.

Recent Findings

Recently, it has been shown that bioactive compounds exhibit immunomodulatory function by regulating inflammatory pathways and ROS homeostasis. It has also been reported that bioactive compounds regulate mitochondria dynamics, thus modulating the autophagy and energy metabolism in the cells.

Summary

In the present article, we have discussed the roles of different bioactive compounds in the modulation of different inflammatory drivers. The functional properties of bioactive compounds in mitochondrial dynamics and its impact on cardiac disease protection have been briefly summarized. Furthermore, we have also discussed various aspects of bioactive compounds with respect to metabolism, immune modulation, circadian rhythm, and its impact on CVD’s pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rosenzweig R, Gupta S, Kumar V, Gumina RJ, Bansal SS. Estrogenic bias in T-lymphocyte biology: implications for cardiovascular disease. Pharmacol Res. 2021;170:105606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenzweig R, Kumar V, Gupta S, Bermeo-Blanco O, Stratton MS, Gumina RJ, et al. Estrogen receptor-β agonists modulate T-lymphocyte activation and ameliorate left ventricular remodeling during chronic heart failure. Circ Heart Fail. 2022;15:e008997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar V, Rosenzweig R, Asalla S, Nehra S, Prabhu SD, Bansal SS. TNFR1 contributes to activation-induced cell death of pathological CD4+ T lymphocytes during ischemic heart failure. JACC Basic Transl Sci. 2022;7:1038–49.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kumar V, Prabhu SD, Bansal SS. CD4+ T-lymphocytes exhibit biphasic kinetics post-myocardial infarction. Front Cardiovasc Med. 2022;9:992653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tao L-C, Xu J-N, Wang T-T, Hua F, Li J-J. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022;21:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kozłowska A, Szostak-Węgierek D. Targeting cardiovascular diseases by flavonols: an update. Nutrients. 2022;14:1439.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wasserman AH, Venkatesan M, Aguirre A. Bioactive lipid signaling in cardiovascular disease, development, and regeneration. Cells. 2020;9:1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. • Sindhu RK, Goyal A, Algın Yapar E, Cavalu S. Bioactive compounds and nanodelivery perspectives for treatment of cardiovascular diseases. Appl Sci. 2021;11:11031. In this review, authors have discussed several strategies of nanoformulation-mediated bioactive drug delivery for cardiacdisease treatment.

    Article  CAS  Google Scholar 

  9. Scolaro B, Soo Jin Kim H, de Castro IA. Bioactive compounds as an alternative for drug co-therapy: overcoming challenges in cardiovascular disease prevention. Crit Rev Food Sci Nutr. 2018;58:958–71.

  10. Ojha S, Bharti S, Sharma AK, Rani N, Bhatia J, Kumari S, et al. Effect of Inula racemosa root extract on cardiac function and oxidative stress against isoproterenol-induced myocardial infarction. Indian J Biochem Biophys. 2011;48:22–8.

    CAS  PubMed  Google Scholar 

  11. Kurosawa T, Itoh F, Nozaki A, Nakano Y, Katsuda S, Osakabe N, et al. Suppressive effects of cacao liquor polyphenols (CLP) on LDL oxidation and the development of atherosclerosis in Kurosawa and Kusanagi-hypercholesterolemic rabbits. Atherosclerosis. 2005;179:237–46.

    Article  CAS  PubMed  Google Scholar 

  12. Bartsch H, Nair J. Ultrasensitive and specific detection methods for exocylic DNA adducts: markers for lipid peroxidation and oxidative stress. Toxicology. 2000;153:105–14.

    Article  CAS  PubMed  Google Scholar 

  13. Aladağ N, Asoğlu R, Ozdemir M, Asoğlu E, Derin A, Demir C, et al. Oxidants and antioxidants in myocardial infarction (MI): investigation of ischemia modified albumin, malondialdehyde, superoxide dismutase and catalase in individuals diagnosed with ST elevated myocardial infarction (STEMI) and non-STEMI (NSTEMI). J Med Biochem. 2021;40:286–94.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ferrari R, Ceconi C, Curello S, Cargnoni A, Alfieri O, Pardini A, et al. Oxygen free radicals and myocardial damage: protective role of thiol-containing agents. Am J Med. 1991;91:S95–105.

    Article  Google Scholar 

  15. Grosso G, Stepaniak U, Micek A, Topor-Mądry R, Pikhart H, Szafraniec K, et al. Association of daily coffee and tea consumption and metabolic syndrome: results from the Polish arm of the HAPIEE study. Eur J Nutr. 2015;54:1129–37.

    Article  CAS  PubMed  Google Scholar 

  16. Pang J, Zhang Z, Zheng T, Bassig BA, Mao C, Liu X, et al. Green tea consumption and risk of cardiovascular and ischemic related diseases: a meta-analysis. Int J Cardiol. 2016;202:967–74.

    Article  PubMed  Google Scholar 

  17. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guo Y-J, Deng G-F, Xu X-R, Wu S, Li S, Xia E-Q, et al. Antioxidant capacities, phenolic compounds and polysaccharide contents of 49 edible macro-fungi. Food Funct. 2012;3:1195–205.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng J, Zhou Y, Li Y, Xu D-P, Li S, Li H-B. Spices for prevention and treatment of cancers. Nutrients. 2016;8:495.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tang G-Y, Meng X, Li Y, Zhao C-N, Liu Q, Li H-B. Effects of vegetables on cardiovascular diseases and related mechanisms. Nutrients. 2017;9.

  21. Zhao C-N, Meng X, Li Y, Li S, Liu Q, Tang G-Y, et al. Fruits for prevention and treatment of cardiovascular diseases. Nutrients. 2017;9.

  22. Deng G-F, Xu X-R, Guo Y-J, Xia E-Q, Li S, Wu S, et al. Determination of antioxidant property and their lipophilic and hydrophilic phenolic contents in cereal grains. J Funct Foods. 2012;4:906–14.

    Article  CAS  Google Scholar 

  23. Zheng J, Zhou Y, Li S, Zhang P, Zhou T, Xu D-P, et al. Effects and mechanisms of fruit and vegetable juices on cardiovascular diseases. Int J Mol Sci. 2017;18.

  24. Tao R, Karliner JS, Simonis U, Zheng J, Zhang J, Honbo N, et al. Pyrroloquinoline quinone preserves mitochondrial function and prevents oxidative injury in adult rat cardiac myocytes. Biochem Biophys Res Commun. 2007;363:257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lara MV, Bonghi C, Famiani F, Vizzotto G, Walker RP, Drincovich MF. Stone fruit as biofactories of phytochemicals with potential roles in human nutrition and health. Front Plant Sci. 2020;11.

  26. Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, et al. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. Biomed Res Int. 2022;2022:5445291.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India. 2004;52:794–804.

    CAS  PubMed  Google Scholar 

  28. You J-S, Pan T-L, Lee Y-S. Protective effects of Danshen (Salvia miltiorrhiza) on adriamycin-induced cardiac and hepatic toxicity in rats. Phytother Res. 2007;21:1146–52.

    Article  PubMed  Google Scholar 

  29. Angeloni C, Spencer JPE, Leoncini E, Biagi PL, Hrelia S. Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress. Biochimie. 2007;89:73–82.

    Article  CAS  PubMed  Google Scholar 

  30. Thangaraju MM, Tamatam A, Bhat PV, Deshetty UM, Babusha ST, Khanum F. Terminalia arjuna extract attenuates isoproterenol-induced cardiac stress in Wistar rats via an anti-apoptotic pathway. Proc Natl Acad Sci India Sect B Biol Sci. 2020;90:1101–12.

    Article  CAS  Google Scholar 

  31. • Panda S, Kar A, Biswas S. Preventive effect of Agnucastoside C against Isoproterenol-induced myocardial injury. Sci Rep. 2017;7:16146. In this study, it has been shown that Agnucastoside exhibits its cardioprotective activity by modulating several metabolicenzymes.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lim KH, Ko D, Kim J-H. Cardioprotective potential of Korean Red Ginseng extract on isoproterenol-induced cardiac injury in rats. J Ginseng Res. 2013;37:273–82.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kumaran KS, Prince PSM. Protective effect of caffeic acid on cardiac markers and lipid peroxide metabolism in cardiotoxic rats: an in vivo and in vitro study. Metabolism. 2010;59:1172–80.

    Article  PubMed  Google Scholar 

  34. Senoner T, Dichtl W. Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients. 2019;11.

  35. Bhattacharjee S, Elancheran R, Dutta K, Deb PK, Devi R. Cardioprotective potential of the antioxidant-rich bioactive fraction of Garcinia pedunculata Roxb. ex Buch.-Ham. against isoproterenol-induced myocardial infarction in Wistar rats. Front Pharmacol. 2022;13.

  36. Keevil JG, Osman HE, Reed JD, Folts JD. Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation. J Nutr. 2000;130:53–6.

    Article  CAS  PubMed  Google Scholar 

  37. Fathiazad F, Matlobi A, Khorrami A, Hamedeyazdan S, Soraya H, Hammami M, et al. Phytochemical screening and evaluation of cardioprotective activity of ethanolic extract of Ocimum basilicum L. (basil) against isoproterenol induced myocardial infarction in rats. Daru. 2012;20:87.

  38. Sarr M, Chataigneau M, Martins S, Schott C, El Bedoui J, Oak M-H, et al. Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase. Cardiovasc Res. 2006;71:794–802.

    Article  CAS  PubMed  Google Scholar 

  39. Banerjee SK, Mukherjee PK, Maulik SK. Garlic as an antioxidant: the good, the bad and the ugly. Phytother Res. 2003;17:97–106.

    Article  CAS  PubMed  Google Scholar 

  40. Maslin DJ, Brown CA, Das I, Zhang XH. Nitric oxide–a mediator of the effects of garlic? Biochem Soc Trans. 1997;25:408S.

    Article  CAS  PubMed  Google Scholar 

  41. Sooranna SR, Hirani J, Das I. Garlic can induce both GTP cyclohydrolase and nitric oxide synthase activity in choriocarcinoma cells. Biochem Soc Trans. 1995;23:543S.

    Article  CAS  PubMed  Google Scholar 

  42. Schächinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000;101:1899–906.

    Article  PubMed  Google Scholar 

  43. Shang A, Cao S-Y, Xu X-Y, Gan R-Y, Tang G-Y, Corke H, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019;8:246.

  44. Mahdavi-Roshan M. Effects of garlic on brachial endothelial function and capacity of plasma to mediate cholesterol efflux in patients with coronary artery disease. Anatol J Cardiol. 2017.

  45. Banerjee SK, Maulik SK. Effect of garlic on cardiovascular disorders: a review. Nutr J. 2002;1:4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bayan L, Koulivand PH, Gorji A. Garlic: a review of potential therapeutic effects. Avicenna J Phytomed. 2014;4:1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. da Costa RM, Rodrigues D, Pereira CA, Silva JF, Alves J V., Lobato NS, et al. Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases. Front Pharmacol. 2019;10.

  48. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 2017;1863:585–97.

  49. Waltenberger B, Mocan A, Šmejkal K, Heiss EH, Atanasov AG. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules. 2016;21.

  50. Basak P, Sadhukhan P, Sarkar P, Sil PC. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. Toxicol Rep. 2017;4:306–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv. 2018;36:1738–67.

    Article  CAS  PubMed  Google Scholar 

  52. Bigagli E, Cinci L, Paccosi S, Parenti A, D’Ambrosio M, Luceri C. Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Int Immunopharmacol. 2017;43:147–55.

  53. Bai Y, Wang X, Zhao S, Ma C, Cui J, Zheng Y. Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxid Med Cell Longev. 2015;2015:407580.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ooi BK, Chan K-G, Goh BH, Yap WH. The role of natural products in targeting cardiovascular diseases via Nrf2 pathway: novel molecular mechanisms and therapeutic approaches. Front Pharmacol. 2018;9:1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kanaan GN, Harper M-E. Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta Gen Subj. 2017;1861:2822–9.

    Article  CAS  PubMed  Google Scholar 

  56. Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, et al. Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Ann Transl Med. 2018;6:256.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ong S-B, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 2010;88:16–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013;17:491–506.

    Article  CAS  Google Scholar 

  59. Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med. 2018;50:121–7.

    Article  CAS  PubMed  Google Scholar 

  60. Paixão J, Dinis TCP, Almeida LM. Malvidin-3-glucoside protects endothelial cells up-regulating endothelial NO synthase and inhibiting peroxynitrite-induced NF-kB activation. Chem Biol Interact. 2012;199:192–200.

    Article  PubMed  Google Scholar 

  61. Paixão J, Dinis TCP, Almeida LM. Dietary anthocyanins protect endothelial cells against peroxynitrite-induced mitochondrial apoptosis pathway and Bax nuclear translocation: an in vitro approach. Apoptosis. 2011;16:976–89.

    Article  PubMed  Google Scholar 

  62. Skemiene K, Liobikas J, Borutaite V. Anthocyanins as substrates for mitochondrial complex I - protective effect against heart ischemic injury. FEBS J. 2015;282:963–71.

    Article  CAS  PubMed  Google Scholar 

  63. Skemiene K, Rakauskaite G, Trumbeckaite S, Liobikas J, Brown GC, Borutaite V. Anthocyanins block ischemia-induced apoptosis in the perfused heart and support mitochondrial respiration potentially by reducing cytosolic cytochrome c. Int J Biochem Cell Biol. 2013;45:23–9.

    Article  CAS  PubMed  Google Scholar 

  64. Jin X, Yi L, Chen M, Chen C, Chang H, Zhang T, et al. Delphinidin-3-glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium-dependent glucose transporter SGLT1. PLoS ONE. 2013;8:e68617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nagi MN, Al-Shabanah OA, Hafez MM, Sayed-Ahmed MM. Thymoquinone supplementation attenuates cyclophosphamide-induced cardiotoxicity in rats. J Biochem Mol Toxicol. 2011;25:135–42.

    Article  CAS  PubMed  Google Scholar 

  66. Kumar A, Kaur H, Devi P, Mohan V. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacol Ther. 2009;124:259–68.

    Article  CAS  PubMed  Google Scholar 

  67. Galuppo M, Giacoppo S, Iori R, De Nicola GR, Milardi D, Bramanti P, et al. 4(α-L-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that defends cerebral tissue and prevents severe damage induced by focal ischemia/reperfusion. J Biol Regul Homeost Agents. 2015;29:343–56.

    CAS  PubMed  Google Scholar 

  68. Shokeir AA, Barakat N, Hussein AM, Awadalla A, Harraz AM, Khater S, et al. Activation of Nrf2 by ischemic preconditioning and sulforaphane in renal ischemia/reperfusion injury: a comparative experimental study. Physiol Res. 2015;64:313–23.

    Article  CAS  PubMed  Google Scholar 

  69. Ho J-N, Yoon H-G, Park C-S, Kim S, Jun W, Choue R, et al. Isothiocyanates ameliorate the symptom of heart dysfunction and mortality in a murine AIDS model by inhibiting apoptosis in the left ventricle. J Med Food. 2012;15:781–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gallage S, Gil J. Mitochondrial dysfunction meets senescence. Trends Biochem Sci. 2016;41:207–9.

    Article  CAS  PubMed  Google Scholar 

  72. Li W, Qin L, Feng R, Hu G, Sun H, He Y, et al. Emerging senolytic agents derived from natural products. Mech Ageing Dev. 2019;181:1–6.

    Article  CAS  PubMed  Google Scholar 

  73. Shanmugam K, Ravindran S, Kurian GA, Rajesh M. Fisetin confers cardioprotection against myocardial ischemia reperfusion injury by suppressing mitochondrial oxidative stress and mitochondrial dysfunction and inhibiting glycogen synthase kinase 3β activity. Oxid Med Cell Longev. 2018;2018:9173436.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yu L, Di W, Dong X, Li Z, Xue X, Zhang J, et al. Diallyl trisulfide exerts cardioprotection against myocardial ischemia-reperfusion injury in diabetic state, role of AMPK-mediated AKT/GSK-3β/HIF-1α activation. Oncotarget. 2017;8:74791–805.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Samuel SM, Thirunavukkarasu M, Penumathsa SV, Paul D, Maulik N. Akt/FOXO3a/SIRT1-mediated cardioprotection by n -tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears toward survival and longevity. J Agric Food Chem. 2008;56:9692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang HA, Kitts DD. Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Mol Cell Biochem. 2021;476:3785–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Deng L, Leng B, Nie X. The cannabis paradox: contrasting role for marijuana in cardiovascular disease. Signal Transduct Target Ther. 2022;7:309.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Arauna D, Furrianca M, Espinosa-Parrilla Y, Fuentes E, Alarcón M, Palomo I. Natural bioactive compounds as protectors of mitochondrial dysfunction in cardiovascular diseases and aging. Molecules. 2019;24:4259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002;113:71–88.

    Article  Google Scholar 

  80. Srivastava S, Pawar VA, Tyagi A, Sharma KP, Kumar V, Shukla SK. Immune modulatory effects of ketogenic diet in different disease conditions. Immuno. 2022;3:1–15.

    Article  Google Scholar 

  81. Sato T, Sassone‐Corsi P. Nutrition, metabolism, and epigenetics: pathways of circadian reprogramming. EMBO Rep. 2022;23.

  82. Fan X, Song Y, Qin D-X, Lin P-Y. Regulatory effects of clock and Bmal1 on circadian rhythmic TLR expression. Int Rev Immunol. 2021;1–12.

  83. Li X, Wang S, Yang S, Ying J, Yu H, Yang C, et al. Circadian locomotor output cycles kaput affects the proliferation and migration of breast cancer cells by regulating the expression of E-cadherin via IQ motif containing GTPase activating protein 1. Oncol Lett. 2018;15:7097–103.

    PubMed  PubMed Central  Google Scholar 

  84. Young ME. The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function. Am J Physiol Heart Circ Physiol. 2006;290:H1–16.

    Article  CAS  PubMed  Google Scholar 

  85. • Torres-Fuentes C, Suárez M, Aragonès G, Mulero M, Ávila-Román J, Arola-Arnal A, et al. Cardioprotective properties of phenolic compounds: a role for biological rhythms. Mol Nutr Food Res. 2022;66:2100990. This article discusses the effect of different bioactive compounds on circadian modulators and their impact on cardioprotection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stewart S, Moholdt TT, Burrell LM, Sliwa K, Mocumbi AO, McMurray JJ, et al. Winter peaks in heart failure: an inevitable or preventable consequence of seasonal vulnerability? Card Fail Rev. 2019;5:83–5.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Investig. 2018;128:2157–67.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Serino A, Salazar G. Protective role of polyphenols against vascular inflammation, aging and cardiovascular disease. Nutrients. 2018;11:53.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bucciantini M, Leri M, Scuto M, Ontario M, Trovato Salinaro A, Calabrese EJ, et al. Xenohormesis underlyes the anti-aging and healthy properties of olive polyphenols. Mech Ageing Dev. 2022;202:111620.

    Article  CAS  PubMed  Google Scholar 

  90. Howitz KT, Sinclair DA. Xenohormesis: sensing the chemical cues of other species. Cell. 2008;133:387–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Duarte DA, Rosales MApB, Papadimitriou A, Silva KC, Amancio VHO, Mendonça JN, et al. Polyphenol-enriched cocoa protects the diabetic retina from glial reaction through the sirtuin pathway. J Nutr Biochem. 2015;26:64–74.

  92. González-Abuín N, Martínez-Micaelo N, Blay M, Pujadas G, Garcia-Vallvé S, Pinent M, et al. Grape seed-derived procyanidins decrease dipeptidyl-peptidase 4 activity and expression. J Agric Food Chem. 2012;60:9055–61.

    Article  PubMed  Google Scholar 

  93. Solà R, Valls R-M, Puzo J, Calabuig J-R, Brea A, Pedret A, et al. Effects of poly-bioactive compounds on lipid profile and body weight in a moderately hypercholesterolemic population with low cardiovascular disease risk: a multicenter randomized trial. PLoS ONE. 2014;9:e101978.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kidd P. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev. 2011;16:355–64.

    PubMed  Google Scholar 

  95. Parikh M, Netticadan T, Pierce GN. Flaxseed: its bioactive components and their cardiovascular benefits. Am J Physiol Heart Circ Physiol. 2018;314:H146–59.

    Article  PubMed  Google Scholar 

  96. Tsartsou E, Proutsos N, Castanas E, Kampa M. Network meta-analysis of metabolic effects of olive-oil in humans shows the importance of olive oil consumption with moderate polyphenol levels as part of the Mediterranean diet. Front Nutr. 2019;6:6.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sanchez-Rodriguez E, Biel-Glesson S, Fernandez-Navarro J, Calleja M, Espejo-Calvo J, Gil-Extremera B, et al. Effects of virgin olive oils differing in their bioactive compound contents on biomarkers of oxidative stress and inflammation in healthy adults: a randomized double-blind controlled trial. Nutrients. 2019;11:561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vázquez-Ruiz Z, Toledo E, Vitelli-Storelli F, Goni L, de la O V, Bes-Rastrollo M, et al. Effect of dietary phenolic compounds on incidence of cardiovascular disease in the SUN project; 10 years of follow-up. Antioxidants. 2022;11:783.

  99. Toma L, Sanda G, Niculescu L, Deleanu M, Sima A, Stancu C. Phenolic compounds exerting lipid-regulatory, anti-inflammatory and epigenetic effects as complementary treatments in cardiovascular diseases. Biomolecules. 2020;10:641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qureshi AA, Qureshi N, Hasler-Rapacz JO, Weber FE, Chaudhary V, Crenshaw TD, et al. Dietary tocotrienols reduce concentrations of plasma cholesterol, apolipoprotein B, thromboxane B2, and platelet factor 4 in pigs with inherited hyperlipemias. Am J Clin Nutr. 1991;53:1042S–1046S.

    Article  CAS  PubMed  Google Scholar 

  101. Qureshi AA, Peterson DM, Hasler-Rapacz JO, Rapacz J. Novel tocotrienols of rice bran suppress cholesterogenesis in hereditary hypercholesterolemic swine. J Nutr. 2001;131:223–30.

    Article  CAS  PubMed  Google Scholar 

  102. Sindhu RK, Goyal A, Yapar EA, Cavalu S. Bioactive compounds and nanodelivery perspectives for treatment of cardiovascular diseases. Applied Sciences (Switzerland). MDPI; 2021.

  103. Flammer AJ, Sudano I, Wolfrum M, Thomas R, Enseleit F, Périat D, et al. Cardiovascular effects of flavanol-rich chocolate in patients with heart failure. Eur Heart J. 2012;2118–20.

  104. Tomé-Carneiro J, Gonzálvez M, Larrosa M, Yáñez-Gascón MJ, García-Almagro FJ, Ruiz-Ros JA, et al. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drugs Ther. 2013;27:37–48.

    Article  PubMed  Google Scholar 

  105. Dohadwala MM, Holbrook M, Hamburg NM, Shenouda SM, Chung WB, Titas M, et al. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am J Clin Nutr. 2011;93:934–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM, Gil A. A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. Nutrients. MDPI AG; 2015. p. 5177–216.

  107. Clerici C, Setchell KDR, Battezzati PM, Pirro M, Giuliano V, Asciutti S, et al. Pasta naturally enriched with isoflavone aglycons from soy germ reduces serum lipids and improves markers of cardiovascular risk 1. J. Nutr. 2007.

  108. Sagara M, Kanda T, Njelekera M, Teramoto T, Armitage L, Birt N, et al. Effects of dietary intake of soy protein and isoflavones on cardiovascular disease risk factors in high risk, middle-aged men in Scotland. J Am Coll Nutr. 2004;23:85–91.

    Article  CAS  PubMed  Google Scholar 

  109. Flammer AJ, Sudano I, Wolfrum M, Thomas R, Enseleit F, Periat D, et al. Cardiovascular effects of flavanol-rich chocolate in patients with heart failure. Eur Heart J. 2012;33:2172–80.

    Article  CAS  PubMed  Google Scholar 

  110. Amin F, Islam N, Anila N, Gilani AH. Clinical efficacy of the co-administration of turmeric and black seeds (Kalongi) in metabolic syndrome – a double blind randomized controlled trial – TAK-MetS trial. Complement Ther Med. 2015;23:165–74.

    Article  CAS  PubMed  Google Scholar 

  111. Son DJ, Kim SY, Han SS, Kim CW, Kumar S, Park BS, et al. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling. Biochem Biophys Res Commun. 2012;427:349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tzeng S-H, Ko W-C, Ko F-N, Teng C-M. Inhibition of platelet aggregation by some flavonoids. Thromb Res. 1991;64:91–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: VK and SKS; writing—original draft preparation: VK, VAP, SS, AT, RT, VK, and SKS; writing—review and editing: VK, VAP, SS, AT, RT, VK, and SKS. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Surendra Kumar Shukla or Vinay Kumar.

Ethics declarations

Informed Consent

Not applicable.

Institutional Review Board

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies related to human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on New Therapies for Cardiovascular Disease

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, V.A., Srivastava, S., Tyagi, A. et al. Efficacy of Bioactive Compounds in the Regulation of Metabolism and Pathophysiology in Cardiovascular Diseases. Curr Cardiol Rep 25, 1041–1052 (2023). https://doi.org/10.1007/s11886-023-01917-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01917-3

Keywords

Navigation