Skip to main content
Log in

A Disruptive Technology: Determining Need for Permanent Pacing After TAVR

  • Invasive Electrophysiology and Pacing (E. Kevin Heist, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Transcatheter aortic valve replacement (TAVR) has changed the paradigm for management of severe aortic stenosis. Despite evolution of TAVR over the past 2 decades, conduction system disturbances remain a concern post-TAVR. In this review, we describe (1) permanent pacemaker (PP) implant rates associated with TAVR, (2) risk factors predicting need for PP therapy post-TAVR, (3) management of perioperative conduction abnormalities, and (4) novel areas of research.

Recent Findings

Conduction disturbances remain a common issue post-TAVR, in particular, left bundle branch block (LBBB). Though newer data describes resolution of a significant fraction of these disturbances over time, rates of pacemaker therapy remain high despite improvements in valve technology and procedural technique.

Summary

Recent consensus statements and guideline documents are important first steps in standardizing an approach to post-TAVR conduction disturbances. New areas of research show promise in both prediction and treatment of conduction disturbances post-TAVR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Popma JJ, Adams DH, Reardon MJ, et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J Am Coll Cardiol. 2014;63:1972–81.

    Article  PubMed  Google Scholar 

  2. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364:2187–98.

    Article  CAS  PubMed  Google Scholar 

  3. Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374:1609–20.

    Article  CAS  PubMed  Google Scholar 

  4. Mori M, Bin Mahmood SU, Geirsson A, et al. Trends in volume and risk profiles of patients undergoing isolated surgical and transcatheter aortic valve replacement. Catheter Cardiovasc Interv. 2019;93:E337–E42.

    Article  PubMed  Google Scholar 

  5. Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380:1695–705.

    Article  PubMed  Google Scholar 

  6. Weber M, Sinning JM, Hammerstingl C, Werner N, Grube E, Nickenig G. Permanent pacemaker implantation after TAVR - predictors and impact on outcomes. Interv Cardiol. 2015;10:98–102.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Russo E, Potenza DR, Casella M, et al. Rate and predictors of permanent pacemaker implantation after transcatheter aortic valve implantation: current status. Curr Cardiol Rev. 2019;15:205–18.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abdel-Wahab M, Mehilli J, Frerker C, et al. Comparison of balloon-expandable vs self-expandable valves in patients undergoing transcatheter aortic valve replacement: the CHOICE randomized clinical trial. JAMA. 2014;311:1503–14.

    Article  PubMed  CAS  Google Scholar 

  9. Maan A, Refaat MM, Heist EK, et al. Incidence and predictors of pacemaker implantation in patients undergoing transcatheter aortic valve replacement. Pacing Clin Electrophysiol. 2015;38:878–86.

    Article  PubMed  Google Scholar 

  10. Lefevre T, Kappetein AP, Wolner E, et al. One year follow-up of the multi-centre European PARTNER transcatheter heart valve study. Eur Heart J. 2011;32:148–57.

    Article  PubMed  Google Scholar 

  11. Thiele H, Kurz T, Feistritzer HJ, et al. Comparison of newer generation self-expandable vs. balloon-expandable valves in transcatheter aortic valve implantation: the randomized SOLVE-TAVI trial. Eur Heart J. 2020;41:1890–9.

    Article  CAS  PubMed  Google Scholar 

  12. Deharo P, Bisson A, Herbert J, et al. Impact of Sapien 3 balloon-expandable versus Evolut R self-expandable transcatheter aortic valve implantation in patients with aortic stenosis: data from a nationwide analysis. Circulation. 2020;141:260–8.

    Article  PubMed  Google Scholar 

  13. Grover FL, Vemulapalli S, Carroll JD, et al. 2016 Annual Report of The Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. J Am Coll Cardiol. 2017;69:1215–30.

    Article  PubMed  Google Scholar 

  14. Kodali SK, Williams MR, Smith CR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med. 2012;366:1686–95.

    Article  CAS  PubMed  Google Scholar 

  15. Kawashima T, Sato F. Visualizing anatomical evidences on atrioventricular conduction system for TAVI. Int J Cardiol. 2014;174:1–6.

    Article  PubMed  Google Scholar 

  16. Sinhal A, Altwegg L, Pasupati S, et al. Atrioventricular block after transcatheter balloon expandable aortic valve implantation. JACC Cardiovasc Interv. 2008;1:305–9.

    Article  PubMed  Google Scholar 

  17. Moreno R, Dobarro D, Lopez de Sa E, et al. Cause of complete atrioventricular block after percutaneous aortic valve implantation: insights from a necropsy study. Circulation. 2009;120:e29–30.

    Article  PubMed  Google Scholar 

  18. Nazif TM, Dizon JM, Hahn RT, et al. Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement: the PARTNER (Placement of AoRtic TraNscathetER Valves) trial and registry. JACC Cardiovasc Interv. 2015;8:60–9.

    Article  PubMed  Google Scholar 

  19. Toggweiler S, Kobza R. Pacemaker implantation after transcatheter aortic valve: why is this still happening? J Thorac Dis. 2018;10:S3614–S9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bob-Manuel T, Nanda A, Latham S, Pour-Ghaz I, Skelton WP, Khouzam RN. Permanent pacemaker insertion in patients with conduction abnormalities post transcatheter aortic valve replacement: a review and proposed guidelines. Ann Transl Med. 2018;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Maeno Y, Abramowitz Y, Kawamori H, et al. A highly predictive risk model for pacemaker implantation after TAVR. JACC Cardiovasc Imaging. 2017;10:1139–47.

    Article  PubMed  Google Scholar 

  22. Ream K, Sandhu A, Valle J, et al. Ambulatory rhythm monitoring to detect late high-grade atrioventricular block following transcatheter aortic valve replacement. J Am Coll Cardiol. 2019;73:2538–47.

    Article  PubMed  Google Scholar 

  23. Lenders GD, Collas V, Hernandez JM, et al. Depth of valve implantation, conduction disturbances and pacemaker implantation with CoreValve and CoreValve Accutrak system for Transcatheter Aortic Valve Implantation, a multi-center study. Int J Cardiol. 2014;176:771–5.

    Article  PubMed  Google Scholar 

  24. Khawaja MZ, Rajani R, Cook A, et al. Permanent pacemaker insertion after CoreValve transcatheter aortic valve implantation: incidence and contributing factors (the UK CoreValve Collaborative). Circulation. 2011;123:951–60.

    Article  CAS  PubMed  Google Scholar 

  25. Barbanti M. Increased pacemaker implantation rate after new-generation balloon-expandable SAPIEN 3 valve: who was to blame, the valve or the doctor? JACC Cardiovasc Interv. 2016;9:814–6.

    Article  PubMed  Google Scholar 

  26. van Rosendael PJ, Delgado V, Bax JJ. Pacemaker implantation rate after transcatheter aortic valve implantation with early and new-generation devices: a systematic review. Eur Heart J. 2018;39:2003–13.

    Article  PubMed  Google Scholar 

  27. Sandhu A, Tzou W, Ream K, et al. Heart block after discharge in patients undergoing TAVR with latest-generation valves. J Am Coll Cardiol. 2018;71:577–8.

    Article  PubMed  Google Scholar 

  28. Petronio AS, Sinning JM, Van Mieghem N, et al. Optimal implantation depth and adherence to guidelines on permanent pacing to improve the results of transcatheter aortic valve replacement with the Medtronic CoreValve System: the CoreValve prospective, International, Post-Market ADVANCE-II Study. JACC Cardiovasc Interv. 2015;8:837–46.

    Article  PubMed  Google Scholar 

  29. Schroeter T, Linke A, Haensig M, et al. Predictors of permanent pacemaker implantation after Medtronic CoreValve bioprosthesis implantation. Europace. 2012;14:1759–63.

    Article  PubMed  Google Scholar 

  30. Lange P, Greif M, Vogel A, et al. Reduction of pacemaker implantation rates after CoreValve(R) implantation by moderate predilatation. EuroIntervention. 2014;9:1151–7.

    Article  PubMed  Google Scholar 

  31. Pibarot P, Hahn RT, Weissman NJ, et al. Association of paravalvular regurgitation with 1-year outcomes after transcatheter aortic valve replacement with the SAPIEN 3 valve. JAMA Cardiol. 2017;2:1208–16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. De Torres-Alba F, Kaleschke G, Diller GP, et al. Changes in the pacemaker rate after transition from Edwards SAPIEN XT to SAPIEN 3 transcatheter aortic valve implantation: the critical role of valve implantation height. JACC Cardiovasc Interv. 2016;9:805–13.

    Article  PubMed  Google Scholar 

  33. van der Boon RM, Nuis RJ, Van Mieghem NM, et al. New conduction abnormalities after TAVI--frequency and causes. Nat Rev Cardiol. 2012;9:454–63.

    Article  PubMed  Google Scholar 

  34. Bax JJ, Delgado V, Bapat V, et al. Open issues in transcatheter aortic valve implantation. Part 2: procedural issues and outcomes after transcatheter aortic valve implantation. Eur Heart J. 2014;35:2639–54.

    Article  PubMed  Google Scholar 

  35. Chamandi C, Barbanti M, Munoz-Garcia A, et al. Long-term outcomes in patients with new-onset persistent left bundle branch block following TAVR. JACC Cardiovasc Interv. 2019;12:1175–84.

    Article  PubMed  Google Scholar 

  36. Houthuizen P, van der Boon RM, Urena M, et al. Occurrence, fate and consequences of ventricular conduction abnormalities after transcatheter aortic valve implantation. EuroIntervention. 2014;9:1142–50.

    Article  PubMed  Google Scholar 

  37. Nazif TM, Williams MR, Hahn RT, et al. Clinical implications of new-onset left bundle branch block after transcatheter aortic valve replacement: analysis of the PARTNER experience. Eur Heart J. 2014;35:1599–607.

    Article  PubMed  Google Scholar 

  38. Urena M, Mok M, Serra V, et al. Predictive factors and long-term clinical consequences of persistent left bundle branch block following transcatheter aortic valve implantation with a balloon-expandable valve. J Am Coll Cardiol. 2012;60:1743–52.

    Article  PubMed  Google Scholar 

  39. Testa L, Latib A, De Marco F, et al. Clinical impact of persistent left bundle-branch block after transcatheter aortic valve implantation with CoreValve Revalving System. Circulation. 2013;127:1300–7.

    Article  PubMed  Google Scholar 

  40. Schymik G, Tzamalis P, Bramlage P, et al. Clinical impact of a new left bundle branch block following TAVI implantation: 1-year results of the TAVIK cohort. Clin Res Cardiol. 2015;104:351–62.

    Article  PubMed  Google Scholar 

  41. Franzoni I, Latib A, Maisano F, et al. Comparison of incidence and predictors of left bundle branch block after transcatheter aortic valve implantation using the CoreValve versus the Edwards valve. Am J Cardiol. 2013;112:554–9.

    Article  PubMed  Google Scholar 

  42. • Auffret V, Puri R, Urena M, et al. Conduction disturbances after transcatheter aortic valve replacement: current status and future perspectives. Circulation. 2017;136:1049–69 This work is a high-quality review of conduction system disturbances and risk factors associated with need for permanent pacemaker therapy post-TAVR.

    Article  PubMed  Google Scholar 

  43. • Rodes-Cabau J, Ellenbogen KA, Krahn AD, et al. Management of conduction disturbances associated with transcatheter aortic valve replacement: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019;74:1086–106 This document outlines strategies for the management of conduction disturbances post-TAVR. It puts forth an organized method to approach such disturbances.

    Article  PubMed  Google Scholar 

  44. Bavaria JE, Tommaso CL, Brindis RG, et al. 2018 AATS/ACC/SCAI/STS expert consensus systems of care document: operator and institutional recommendations and requirements for transcatheter aortic valve replacement: a joint report of the American Association for Thoracic Surgery, American College of Cardiology, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2019;73:340–74.

    Article  PubMed  Google Scholar 

  45. Meduri CU, Kereiakes DJ, Rajagopal V, et al. Pacemaker implantation and dependency after transcatheter aortic valve replacement in the REPRISE III Trial. J Am Heart Assoc. 2019;e012594:8.

    Google Scholar 

  46. Sandhu A, Aleong RG, Ream K, et al. Abstract 16381: Pacing burden in those undergoing permanent pacemaker implantation after Tavr with latest generation valves. Circulation. 2019;140:A16381-A.

    Google Scholar 

  47. Fry E, Fan J, Davis A, et al. Abstract 11330: High and low pacing burden associations for pacemakers implanted post Tavr. Circulation. 2019;140:A11330-A.

    Google Scholar 

  48. Nazif T, Sanchez C, Whisenant B, et al. Analysis of the initial united states experience with the biotrace tempo temporary pacing lead in transcatheter aortic valve replacement (TAVR) and other cardiac procedures. J Am Coll Cardiol. 2018;71:A1285.

    Article  Google Scholar 

  49. Vijayaraman P, Cano O, Koruth JS, et al. His-Purkinje conduction system pacing following transcatheter aortic valve replacement: feasibility and safety. JACC Clin Electrophysiol. 2020;6:649–57.

    Article  PubMed  Google Scholar 

  50. Kiani S, Kamioka N, Black GB, et al. Development of a risk score to predict new pacemaker implantation after transcatheter aortic valve replacement. J Am Coll Cardiol Intv. 2019;12:2133–42.

    Article  Google Scholar 

  51. Krishnaswamy A, Sammour Y, Mangieri A, et al. The utility of rapid atrial pacing immediately post-TAVR to predict the need for pacemaker implantation. J Am Coll Cardiol Intv. 2020;13:1046–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy S. Tzou.

Ethics declarations

Conflict of Interest

Dr. Sandhu has nothing to disclose. Dr. Tzou reports personal fees from Medtronic, Boston Scientific, and Biotronik, and grants and personal fees from Abbott.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Invasive Electrophysiology and Pacing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhu, A., Tzou, W.S. A Disruptive Technology: Determining Need for Permanent Pacing After TAVR. Curr Cardiol Rep 23, 53 (2021). https://doi.org/10.1007/s11886-021-01481-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01481-8

Keywords

Navigation