Skip to main content
Log in

Multimodality Imaging of Myocardial Viability

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Myocardial viability is an important pathophysiologic concept which may have significant clinical impact in patients with left ventricular dysfunction due to ischemic heart disease. Understanding the imaging modalities used to assess viability, and the clinical implication of their findings, is critical for clinical decision-making in this population.

Recent Findings

The ability of dobutamine echocardiography, single-photon emission computed tomography, positron emission tomography, and cardiac magnetic resonance imaging to predict functional recovery following revascularization is well-established. Despite different advantages and disadvantages for each imaging modality, each modality has demonstrated reasonable performance characteristics in identifying viable myocardium. Recent data, however, has called into question whether this functional recovery leads to improved clinical outcomes.

Summary

Although the assessment of viability can be used to aid in clinical decision-making prior to revascularization, its broad application to all patients is limited by a lack of data confirming improvement in clinical outcomes. Thus, viability assessments may be best applied to select patients (such as those with increased surgical risk) and integrated with clinical, laboratory, and imaging data to guide clinical care. Future research efforts should be aimed at establishing the impact of viability on clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975;56:978–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barnes E, Hall RJ, Dutka DP, Camici PG. Absolute blood flow and oxygen consumption in stunned myocardium in patients with coronary artery disease. J Am Coll Cardiol. 2002;39:420–7.

    Article  PubMed  Google Scholar 

  3. Fallavollita JA, Malm BJ, Canty JM Jr. Hibernating myocardium retains metabolic and contractile reserve despite regional reductions in flow, function, and oxygen consumption at rest. Circ Res. 2003;92(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  4. Shah DJ, Kim HW, James O, Parker M, Wu E, Bonow R, et al. Prevalence of regional myocardial thinning and relationship with myocardial scarring in patients with coronary artery disease. JAMA. 2013;309:909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ausma J, Schaart G, Thoné F, Shivalkar B, Flameng W, Depré C, et al. Chronic ischemic viable myocardium in man: aspects of dedifferentiation. Cardiovasc Pathol. 1995;4:29–37.

    Article  CAS  PubMed  Google Scholar 

  6. Cheirif J, Murgo JP. Assessment of myocardial viability by dobutamine echocardiography. Coron Artery Dis. 1995;6:600–5.

    Article  CAS  PubMed  Google Scholar 

  7. Hays JT, Mahmarian JJ, Cochran AJ, Verani MS. Dobutamine thallium-201 tomography for evaluating patients with suspected coronary artery disease unable to undergo exercise or vasodilator pharmacologic stress testing. J Am Coll Cardiol. 1993;21:1583–90.

    Article  CAS  PubMed  Google Scholar 

  8. Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, et al. Guidelines for performance, interpretation, and application of stress echocardiography in ischemic heart disease: from the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33(1):1–41.

    Article  PubMed  Google Scholar 

  9. Cornel JH, Bax JJ, Elhendy A, Maat APWM, Kimman GP, Geleijnse ML, et al. Biphasic response to dobutamine predicts improvement of global left ventricular function after surgical revascularization in patients with stable coronary artery disease: implications of time course of recovery on diagnostic accuracy. J Am Coll Cardiol. 1998;31:1002–10.

    Article  CAS  PubMed  Google Scholar 

  10. Bax JJ, Poldermans D, Elhendy A, Cornel JH, Boersma E, Rambaldi R, et al. Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J Am Coll Cardiol. 1999;34:163–9.

    Article  CAS  PubMed  Google Scholar 

  11. Cwajg JM, Cwajg E, Nagueh SF, He ZX, Qureshi U, Olmos LI, et al. End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest redistribution T1-201 tomography and dobutamine stress echocardiography. J Am Coll Cardiol. 2000;35:1152–61.

    Article  CAS  PubMed  Google Scholar 

  12. Hickman M, Chelliah R, Burden L, Senior R. Resting myocardial blood flow, coronary flow reserve, and contractile reserve in hibernating myocardium: implications for using resting myocardial contrast echocardiography vs. dobutamine echocardiography for the detection of hibernating myocardium. Eur J Echocardiogr. 2010;11:756–62.

    Article  PubMed  Google Scholar 

  13. Hoffmann R, Lethen H, Marwick T, Arnese M, Fioretti P, Pingitore A, et al. Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol. 1996;27:330–6.

    Article  CAS  PubMed  Google Scholar 

  14. Dilisizian V. SPECT and PET myocardial perfusion imaging: tracers and techniques. In Dilsizian V, Narula J, Braunwald E, editors. Atlas of nuclear cardiology 4th edition. New York, Springer, 2013, pp55–94.

  15. Zipes D, Libby P, Bonow R, Mann D, Tomaselli G. Founding editor and online editor Braunwald E. Braunwald’s heart disease: a textbook of cardiovascular medicine. 11th edition. Philadelphia: Saunders/Elsevier, 2019.

  16. Berfer BC, Watson DD, Burwell LR, Crosby IK, Wellons HA, Teates CD, et al. Redistribution of thallium at rest in patients with stable and unstable angina and the effect of coronary artery bypass surgery. Circulation. 1979;60:1114–25.

    Article  Google Scholar 

  17. Dilsizian V, Rocco TP, Freedman NMT, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med. 1990;323:141–6.

    Article  CAS  PubMed  Google Scholar 

  18. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32:375–410.

    Article  PubMed  Google Scholar 

  19. Udelson JE, Coleman PS, Metherall J, Pandian NG, Gomez AR, Griffith JL, et al. Predicting recovery of severe regional ventricular dysfunction. Comparison of resting sintigraphy with 201Tl and 99mTc-sestamibi. Circulation. 1994;89(6):2552–61.

    Article  CAS  PubMed  Google Scholar 

  20. Bisi G, Sciagra R, Santoro GM, Fazzini PF. Rest technetium-99m sestambi tomography in combination with short-term administration of nitrates: feasibility and reliability for prediction of postrevascularization outcome of asynergic territories. J Am Coll Cardiol. 1994;24:1282–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sciagra R, Bisi G, Santoro GM, Zerauschek F, Sestini S, Pedenovi P, et al. Comparison of baseline-nitrate technetium-99m sestamibi with rest-redistribution thallium-201 tomography in detecting viable myocardium and predicting postrevascularization recovery. J Am Coll Cardiol. 1997;30:384–91.

    Article  CAS  PubMed  Google Scholar 

  22. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation. 2003;108:1404–18.

    Article  PubMed  Google Scholar 

  23. Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008;117:103–14.

    Article  PubMed  Google Scholar 

  24. Loffler AI, Kramer CM. Myocardial viability testing to guide coronary revascularization. Interv Cardiol Clin. 2018;7(3):355–65.

    PubMed  PubMed Central  Google Scholar 

  25. Garcia M, Kwong RY, Scherrer-Crosbie M, Taub C, Blankstein R, Lima J, et al. State of the art: imaging for myocardial viability: a scientific statement from the American Heart Association. Circ Cardiovasc Imaging. 2020;13:e000053.

    Article  PubMed  Google Scholar 

  26. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23:1187–226.

    Article  PubMed  Google Scholar 

  27. Thompson K, Saab G, Birnie D, Chow BJ, Ukkonen H, Ananthasubramaniam K, et al. Is septal glucose metabolism altered in patients with left bundle branch block and ischemic cardiomyopathy? J Nucl Med. 2006;47:1763–8.

    CAS  PubMed  Google Scholar 

  28. Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol. 2001;26:141–88.

    Article  Google Scholar 

  29. Di Carli MF, Asgarzadie F, Schelbert HR, Brunken RC, Laks H, Phelps ME, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation. 1995;92(12):3436–44.

    Article  PubMed  Google Scholar 

  30. Gerber BL, Ordoubadi FF, Wijns W, Vanoverschelde JL, Knuuti MJ, Janier M, et al. Positron emission tomography using(18)F-fluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp: optimal criteria for the prediction of recovery of post-ischaemic left ventricular dysfunction. Results from the European Community Concerted Action Multicenter study on use of(18)F-fluoro-deoxyglucose Positron Emission Tomography for the Detection of Myocardial Viability. Eur Heart J. 2001;22(18):1691.

    Article  CAS  PubMed  Google Scholar 

  31. Beanlands RS, Ruddy TD, deKemp RA, Iwanochko RM, Coates G, Freeman M, et al. Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol. 2002;40(10):1735–43.

    Article  PubMed  Google Scholar 

  32. Slart RH, Bax JJ, Van Veldhuisen DJ, van der Wall EE, Irwan R, Sluiter WJ, et al. Prediction of functional recovery after revascularization in patients with chronic left ventricular dysfunction: head to head comparison between 99mTc-sestamibi/18F-FDG DISA SPECT and 13N-ammonia/18F-FDG PET. Eur J Nucl Med Mol Imaging. 2006;33:716–23.

    Article  PubMed  Google Scholar 

  33. Kellman P, Arai AE. Cardiac imaging techniques for physicians: late enhancement. J Magn Reson Imaging. 2012;36:529–42.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim RJ, Choi KM, Judd RM. Assessment of myocardial viability by contrast enhancement. In: Higgins CB, de Roos A, editors. Cardiovascular MRI and MRA. Philadelphia: Lippincott Williams and Wilkins; 2003. p. 209–37.

    Google Scholar 

  35. Ricciardi MJ, Wu E, Davidson CJ, Choi KM, Klocke FJ, Bonow RO, et al. Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatinine kinase-mb elevation. Circulation. 2001;103:2780–3.

    Article  CAS  PubMed  Google Scholar 

  36. • Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53 Landmark study demonstrating the robust inverse association between the degree of transmural scar on CMR and myocardial viability.

    Article  CAS  PubMed  Google Scholar 

  37. Selvanayagam JB, Kardos A, Francis JM, Wiesmann F, Petersen SE, Taggart D, et al. Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting viability after surgical revascularization. Circulation. 2004;110:1535–41.

    Article  PubMed  Google Scholar 

  38. Baer FM, Theissen P, Schneider CA, Voth E, Sechtem U, Schicha H, et al. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol. 1998;31:1040–8.

    Article  CAS  PubMed  Google Scholar 

  39. Romero J, Xue X, Gonzalez W, Garcia MJ. CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials. JACC Cardiovasc Imaging. 2012;5:494–508.

    Article  PubMed  Google Scholar 

  40. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002;105:162–7.

    Article  PubMed  Google Scholar 

  41. Kirschbaum SW, Baks T, van den Ent M, Sianos G, Krestin GP, Serruys PW. Evaluation of left ventricular function three years after percutaneous recanalization of chronic total coronary occlusions. Am J Cardiol. 2008;101(2):179–85.

    Article  PubMed  Google Scholar 

  42. Indik JH, Gimbel JR, Abe H, Alkmim-Teixeira R, Birgersdotter-Green U, Clarke GD, et al. 2017 HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Heart Rhythm. 2017;14(7):e97–e153.

    Article  PubMed  Google Scholar 

  43. Gray WR, Buja LM, Hagler HK, Parkey RW, Willerson JT. Computed tomography for localization and sizing of experimental acute myocardial infarcts. Circulation. 1978;58(pt 1):497–504.

    Article  CAS  PubMed  Google Scholar 

  44. Hoffmann U, Millea R, Enzweiler C, Ferencik M, Gulick S, Titus J, et al. Acute myocardial infarction: contrast-enhanced multi-detector row CT in a porcine model. Radiology. 2004;231:697–701.

    Article  PubMed  Google Scholar 

  45. Lardo AC, Cordeiro MA, Silva C, Amado LC, George RT, Saliaris AP, et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation. 2006;113:394–404.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chiou KR, Liu CP, Peng NJ, Huang WC, Hsiao SH, Huang YL, et al. Identification and viability assessment of infarcted myocardium with late enhancement multidetector computed tomography: comparison with thallium single photon emission computed tomography and echocardiography. Am Heart J. 2008;155:738–45.

    Article  PubMed  Google Scholar 

  47. Gerber BL, Rousseau MF, Ahn SA, le Polain de Waroux JB, Pouleur AC, Phlips T, et al. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J Am Coll Cardiol. 2012;59(9):825–35.

    Article  PubMed  Google Scholar 

  48. Underwood SR, Bax JJ, Vom Dahl J, Henein MY, Knuuti J, van Rossum AC, et al. Imaging techniques for the assessment of myocardial hibernation: report of a study group of the European Society of Cardiology. Eur Heart J. 2004;25:815–36.

    Article  PubMed  Google Scholar 

  49. Bax JJ, Maddahi J, Poldermans D, Elhendy A, Cornel JH, Boersma E, et al. Sequential 201Tl imaging and dobutamine echocardiography to enhance accuracy of predicting improved left ventricular ejection fraction after revascularization. J Nucl Med. 2002;43:795–802.

    PubMed  Google Scholar 

  50. Nensa F, Bamberg F, Rischpler C, Menezes L, Poeppel TD, la Fourgere C, et al. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur Radiol. 2018;28(10):4086–101.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39(7):1151–8.

    Article  PubMed  Google Scholar 

  52. Yan AT, Shayne AJ, Brown KA, Gupta SN, Chan CW, Luu TM, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation. 2006;114:32–9.

    Article  PubMed  Google Scholar 

  53. Canty JM Jr, Suzuki G, Banas MD, Verheyen F, Borgers M, Fallavollita JA. Hibernating myocardium: chronically adapted to ischemia but vulnerable to sudden death. Circ Res. 2004;94:1142–9.

    Article  CAS  PubMed  Google Scholar 

  54. • Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25 STICH viability (a nonrandomized, prospective substudy of the STICH trial) demonstrated that the possible improvement in outcomes with coronary bypass surgery (versus medical therapy alone) was not affected by the presence or absence of viability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. • Panza JA, Ellis AM, Al-Khalidi HR, Holly TA, Berman DS, Oh JK, et al. Myocardial viability and long-term outcomes in Ischemic cardiomyopathy. N Engl J Med. 2019;381(8):739–48 Long-term follow-up of the STICH viability substudy that confirmed that the improvement in outcomes with coronary bypass surgery (versus medical therapy alone) was irrespective of viability status.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med. 2011;364(17):1607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Velazquez EJ, Lee KL, Jones RH, Al-Khalidi HR, Hill JA, et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med. 2016;374(16):1511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Perrone-Filardi P, Pinto FJ. Looking for myocardial viability after a STICH trial: not enough to close the door. J Nucl Med. 2012;53:349–52.

    Article  PubMed  Google Scholar 

  59. Srichai MB, Jaber WA. Viability by MRI or PET would have changed the results of the STICH trial. Prog Cardiovasc Dis. 2013;55:487–93.

    Article  PubMed  Google Scholar 

  60. • Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50(20):2002–12 Randomized trial demonstrating that FDG PET-assisted management (versus standard care) did not improve outcomes. Interestingly, in the subset of patients who adhered to PET recommendations, outcome benefits were observed.

    Article  PubMed  Google Scholar 

  61. Mc Ardle B, Shukla T, Nichol G, deKemp RA, Bernick J, Guo A, et al. Long-term follow-up of outcomes with F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction secondary to coronary disease. Circ Cardiovasc Imaging. 2016;9(9):e004331.

    Article  PubMed  Google Scholar 

  62. Abraham A, Nichol G, Williams KA, Guo A, deKemp RA, Garrad L, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med. 2010;51(4):567–74.

    Article  PubMed  Google Scholar 

  63. Orlandini A, Castellana N, Pascual A, Botto F, Bahit MC, Chacon C, et al. Myocardial viability for decision-making concerning revascularization in patients with left ventricular dysfunction and coronary artery disease: a meta-analysis of non-randomized and randomized studies. Int J Cardiol. 2015;182:494–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Donnino.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parikh, K., Choy-Shan, A., Ghesani, M. et al. Multimodality Imaging of Myocardial Viability. Curr Cardiol Rep 23, 5 (2021). https://doi.org/10.1007/s11886-020-01433-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01433-8

Keywords

Navigation