Skip to main content
Log in

SPECT Versus PET Myocardial Perfusion Imaging in Patients with Equivocal CT

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The most pertinent clinical question in post-coronary computed tomography angiography (CCTA) patients is the assessment of the physiological significance of an anatomically identified stenosis. The clinical application of radionuclide MPI using single-photon emission computed tomography (SPECT) versus positron emission tomography (PET) in the evaluation and management of patients with an inconclusive CCTA is reviewed using a case-based approach.

Recent Findings

Recent evidence suggests that CCTA is the most sensitive non-invasive test to exclude angiographic CAD and may be an effective first-line test especially among symptomatic low-intermediate risk patients. However, in the presence of angiographic atherosclerosis, its specificity and positive predictive value for identifying flow-limiting stenosis are modest.

Summary

Radionuclide myocardial perfusion imaging offers accurate quantitative assessment of myocardial ischemia, which helps with risk stratification and patient management especially the potential need for revascularization. Routine accurate quantifications of myocardial blood flow and flow reserve are major advantages of PET MPI, which are especially useful when used in patients at intermediate-high clinical risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MPI:

Myocardial perfusion imaging

CAD:

Coronary artery disease

SPECT:

Single-photon emission computed tomography

PET:

Positron emission tomography

CCTA:

Coronary computed tomography angiography

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

HTN:

Hypertension

HLD:

Hyperlipidemia

DM:

Diabetes mellitus

ER:

Emergency department

ECG:

Electrocardiogram

hs-TnT:

High-sensitivity troponin T

LCx:

Left circumflex

LAD:

Left anterior descending

RI:

Ramus intermedius

METs:

Metabolic equivalents

APMHR:

Age-predicted maximal heart rate

BP:

Blood pressure

ICA:

Invasive coronary angiogram

LV:

Left ventricular

RV:

Right ventricular

CMD:

Coronary microvascular dysfunction

CTO:

Chronic total occlusion

PCI:

Percutaneous coronary intervention

RCA:

Right coronary artery

CABG:

Coronary artery bypass grafting

CKD:

Chronic kidney disease

LM:

Left main

LIMA:

Left internal mammary artery

SVG:

Saphenous venous graft

RPDA:

Right posterior descending artery

RPLV:

Right posterolateral vessel

Afib:

Atrial fibrillation

ETT:

Exercise treadmill test

CV:

Cardioversion

PHTN:

Pulmonary hypertension

FFR:

Fractional flow reserve

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–668.

  2. Feher A, Sinusas AJ. Quantitative assessment of coronary microvascular function: dynamic single-photon emission computed tomography, positron emission tomography, ultrasound, computed tomography, and magnetic resonance imaging. Circ Cardiovasc Imaging. 2017;10(8):e006427. This review describes the key concepts of coronary and microvascular physiology, available modalities for dynamic imaging for quantitative assessment of coronary perfusion and myocardial blood flow, and discusses their application in distinct forms of coronary microvascular dysfunction.

  3. Murthy VL, Di Carli MF. Non-invasive quantification of coronary vascular dysfunction for diagnosis and management of coronary artery disease. J Nucl Cardiol. 2012;19:1060–72 quiz 1075.

    Article  Google Scholar 

  4. Hachamovitch R, Di Carli MF. Nuclear imaging and PET. In: de Lemos JAOT, editor. Chronic coronary artery disease: a companion to Braunwald’s heart disease. Philadelphia, PA: Elsevier Inc; 2018. p. 147–73.

    Chapter  Google Scholar 

  5. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol. 2014;64:1464–75.

    Article  Google Scholar 

  6. Johnson NP, Gould KL. Physiological basis for angina and ST-segment change PET-verified thresholds of quantitative stress myocardial perfusion and coronary flow reserve. JACC Cardiovasc Imaging. 2011;4:990–8.

    Article  Google Scholar 

  7. Kajander S, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122:603–13.

    Article  CAS  Google Scholar 

  8. Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55:248–55.

    Article  Google Scholar 

  9. Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19:670–80.

    Article  Google Scholar 

  10. Fukushima K, Javadi MS, Higuchi T, Lautamäki R, Merrill J, Nekolla SG, et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J Nucl Med. 2011;52:726–32.

    Article  Google Scholar 

  11. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150–6.

    Article  Google Scholar 

  12. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126:1858–68.

    Article  CAS  Google Scholar 

  13. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124:2215–24.

    Article  Google Scholar 

  14. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19–27.

    Article  Google Scholar 

  15. Tio RA, Dabeshlim A, Siebelink HM, et al. Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med. 2009;50:214–9.

    Article  Google Scholar 

  16. Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58:740–8.

    Article  Google Scholar 

  17. Patel KK, Spertus JA, Chan PS, et al. Myocardial blood flow reserve assessed by positron emission tomography myocardial perfusion imaging identifies patients with a survival benefit from early revascularization. Eur Heart J. 2020;41(6):759–68.

  18. Rana JS, Dunning A, Achenbach S, al-Mallah M, Budoff MJ, Cademartiri F, et al. Differences in prevalence, extent, severity, and prognosis of coronary artery disease among patients with and without diabetes undergoing coronary computed tomography angiography: results from 10,110 individuals from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes): an InteRnational Multicenter Registry. Diabetes Care. 2012;35:1787–94.

    Article  Google Scholar 

  19. Muhlestein JB, Lappe DL, Lima JA, et al. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA. 2014;312:2234–43.

    Article  CAS  Google Scholar 

  20. Hulten E, Pickett C, Bittencourt MS, Villines TC, Petrillo S, di Carli MF, et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J Am Coll Cardiol. 2013;61:880–92.

    Article  Google Scholar 

  21. Mc Ardle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? A systematic review and meta-analysis. J Am Coll Cardiol. 2012;60:1828–37.

    Article  Google Scholar 

  22. Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging. 2012;5:700–7.

    Article  Google Scholar 

  23. Neglia D, Rovai D, Caselli C, et al. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging. Circ Cardiovasc Imaging. 2015;8(3):e002179.

  24. Takx RA, Blomberg BA, El Aidi H, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging. 2015;8(1):e002666.

  25. Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol. 2017;2:1100–7.

    Article  Google Scholar 

  26. Driessen RS, Danad I, Stuijfzand WJ, et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J Am Coll Cardiol. 2019;73:161–73 This study showed that FFR-CT had a higher diagnostic performance than standard coronary CTA, SPECT, and PET for vessel-specific ischemia, provided coronary CTA images were evaluable by FFR-CT; however, PET had a favorable performance in per-patient and intention-to-diagnose analysis.

    Article  Google Scholar 

  27. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129:2518–27.

    Article  Google Scholar 

  28. Taqueti VR, Shaw LJ, Cook NR, Murthy VL, Shah NR, Foster CR, et al. Excess cardiovascular risk in women relative to men referred for coronary angiography is associated with severely impaired coronary flow reserve, not obstructive disease. Circulation. 2017;135:566–77.

    Article  Google Scholar 

  29. Galassi AR, Brilakis ES, Boukhris M, Tomasello SD, Sianos G, Karmpaliotis D, et al. Appropriateness of percutaneous revascularization of coronary chronic total occlusions: an overview. Eur Heart J. 2016;37:2692–700.

    Article  Google Scholar 

  30. Khuddus MA, Pepine CJ, Handberg EM, Bairey Merz CN, Sopko G, Bavry AA, et al. An intravascular ultrasound analysis in women experiencing chest pain in the absence of obstructive coronary artery disease: a substudy from the National Heart, Lung and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). J Interv Cardiol. 2010;23:511–9.

    Article  Google Scholar 

  31. Lee BK, Lim HS, Fearon WF, Yong AS, Yamada R, Tanaka S, et al. Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease. Circulation. 2015;131:1054–60.

    Article  Google Scholar 

  32. Taqueti VR, Di Carli MF. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72:2625–41.

    Article  Google Scholar 

  33. De Bruyne B, Hersbach F, Pijls NH, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but "Normal" coronary angiography. Circulation. 2001;104:2401–6.

    Article  Google Scholar 

  34. Gould KL, Nakagawa Y, Nakagawa K, Sdringola S, Hess MJ, Haynie M, et al. Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation. 2000;101:1931–9.

    Article  CAS  Google Scholar 

  35. Jespersen L, Hvelplund A, Abildstrom SZ, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33:734–44.

    Article  Google Scholar 

  36. Maddox TM, Stanislawski MA, Grunwald GK, Bradley SM, Ho PM, Tsai TT, et al. Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA. 2014;312:1754–63.

    Article  CAS  Google Scholar 

  37. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362:886–95.

    Article  CAS  Google Scholar 

  38. Hoffmann U, Ferencik M, Udelson JE, Picard MH, Truong QA, Patel MR, et al. Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain: insights from the PROMISE trial (Prospective Multicenter Imaging Study for Evaluation of chest pain). Circulation. 2017;135:2320–32.

    Article  Google Scholar 

  39. Investigators S-H. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385:2383–91.

    Article  Google Scholar 

  40. Angelini P, Uribe C. Anatomic spectrum of left coronary artery anomalies and associated mechanisms of coronary insufficiency. Catheter Cardiovasc Interv. 2018;92:313–21.

    Article  Google Scholar 

  41. Cheezum MK, Ghoshhajra B, Bittencourt MS, Hulten EA, Bhatt A, Mousavi N, et al. Anomalous origin of the coronary artery arising from the opposite sinus: prevalence and outcomes in patients undergoing coronary CTA. Eur Heart J Cardiovasc Imaging. 2017;18:224–35.

    Article  Google Scholar 

  42. Rigatelli G, Zuin M, Galasso P, et al. Mechanisms of myocardial ischemia inducing sudden cardiac death in athletes with anomalous coronary origin from the opposite sinus: insights from a computational fluid dynamic study. Cardiovasc Revasc Med. 2019;20(12):1112–6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo F. Di Carli.

Ethics declarations

Conflict of Interest

Vasvi Singh declares that she has no conflict of interest.

Marcelo F. Di Carli has research grants from Spectrum Dynamics and Gilead Sciences, and consulting fees from Bayer and Janssen.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Di Carli, M.F. SPECT Versus PET Myocardial Perfusion Imaging in Patients with Equivocal CT. Curr Cardiol Rep 22, 43 (2020). https://doi.org/10.1007/s11886-020-01287-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01287-0

Keywords

Navigation