Skip to main content
Log in

What Is the Clinical Utility of Intravascular Ultrasound?

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article reviews the contemporary evidence base for use of coronary intravascular ultrasound (IVUS).

Recent Findings

Recent studies have strongly associated IVUS guidance during percutaneous coronary angioplasty (PCI) with lower major adverse cardiac events (MACE), stent thrombosis, and in selected groups, mortality. The PROSPECT study found in acute coronary syndromes patients, IVUS-determined minimal luminal area ≤ 4.0 mm2 and the presence of thin-cap fibroatheromas were independent predictors of future MACE in non-culprit lesions. A sub-analysis of the ADAPT-DES trial demonstrated significant reductions in stent thrombosis, myocardial infarction, and composite MACE in patients with IVUS-guided PCI versus angiography alone. In patients with cardiac allograft vasculopathy, IVUS measurements of intimal thickening and attenuated-signal plaque are associated with increased mortality.

Summary

IVUS has become a ubiquitous and versatile adjunct to conventional angiography. It is a powerful tool for identification and assessment of atherosclerotic disease, guidance of percutaneous coronary intervention, and detection of cardiac allograft vasculopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Riley RF, Don CW, Powell W, Maynard C, Dean LS. Trends in coronary revascularization in the United States from 2001 to 2009: recent declines in percutaneous coronary intervention volumes. Circ Cardiovasc Qual Outcomes. 2011;4:193–7. https://doi.org/10.1161/CIRCOUTCOMES.110.958744.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Retzer EM, Jagadeesan V, Nathan S. Intravascular ultrasound: applications and limitations. In: Lang R, Goldstein SA, Kronzon I, Khanderia BK, Mor-Avi V, editors. ASE’s Compr. Echocardiogr. 2nd ed., 2015.

  3. Jagadeesan V, Retzer EM, Nathan S. Intravascular ultrasound: instrumentation and technique. In: Lang RM, Goldstein SA, Kronzon I, Khanderia BK, Mor-Avi V, editors. ASE’s Compr. Echocardiogr. 2nd ed., Elsevier; 2015, p. 75–8.

  4. ACIST kodama intravascular ultrasound catheter n.d. https://www.accessdata.fda.gov/cdrh_docs/pdf17/K173063.pdf (accessed July 23, 2018).

  5. Topol EJ, Nissen SE. Our preoccupation with coronary luminology: the dissociation between clinical and angiographic findings in ischemic heart disease. Circulation. 1995;92:2333–42. https://doi.org/10.1161/01.CIR.92.8.2333.

    Article  CAS  PubMed  Google Scholar 

  6. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5. https://doi.org/10.1056/NEJM198705283162204.

    Article  CAS  PubMed  Google Scholar 

  7. Matthews SD, Frishman WH. A review of the clinical utility of intravascular ultrasound and optical coherence tomography in the assessment and treatment of coronary artery disease. Cardiol Rev. 2017;25:68–76. https://doi.org/10.1097/CRD.0000000000000128.

    Article  PubMed  Google Scholar 

  8. Yamagishi M, Miyatake K, Tamai J, Nakatani S, Koyama J, Nissen SE. Intravascular ultrasound detection of atherosclerosis at the site of focal vasospasm in angiographically normal or minimally narrowed coronary segments. J Am Coll Cardiol. 1994;23:352–7. https://doi.org/10.1016/0735-1097(94)90419-7.

    Article  CAS  PubMed  Google Scholar 

  9. St Goar FG, Pinto FJ, Alderman EL, Valantine HA, Schroeder JS, Gao SZ, et al. Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation. 1992;85:979–87.

    Article  CAS  PubMed  Google Scholar 

  10. •• Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35. https://doi.org/10.1056/NEJMoa1002358 A prospective trial which demonstrated that minimal luminal area of 4.0mm or less and presence of thin-cap fibroatheromas on IVUS evaluation were independent predictors of subsequent MACE in nonculprit lesions.

    Article  CAS  PubMed  Google Scholar 

  11. Koo B-K, Yang H-M, Doh J-H, Choe H, Lee S-Y, Yoon C-H, et al. Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenoses of different locations. JACC Cardiovasc Interv. 2011;4:803–11. https://doi.org/10.1016/J.JCIN.2011.03.013.

    Article  PubMed  Google Scholar 

  12. Park S-J, Ahn J-M, Kang S-J, Yoon S-H, Koo B-K, Lee J-Y, et al. Intravascular ultrasound-derived minimal lumen area criteria for functionally significant left main coronary artery stenosis. JACC Cardiovasc Interv. 2014;7:868–74. https://doi.org/10.1016/j.jcin.2014.02.015.

    Article  PubMed  Google Scholar 

  13. Kang S-J, Ahn J-M, Song H, Kim W-J, Lee J-Y, Park D-W, et al. Usefulness of minimal luminal coronary area determined by intravascular ultrasound to predict functional significance in stable and unstable angina pectoris. Am J Cardiol. 2012;109:947–53. https://doi.org/10.1016/j.amjcard.2011.11.024.

    Article  PubMed  Google Scholar 

  14. McDaniel MC, Eshtehardi P, Sawaya FJ, Douglas JS, Samady H. Contemporary clinical applications of coronary intravascular ultrasound. JACC Cardiovasc Interv. 2011;4:1155–67. https://doi.org/10.1016/j.jcin.2011.07.013.

    Article  PubMed  Google Scholar 

  15. • Ben-Dor I, Mahmoudi M, Deksissa T, Bui AB, Gaglia MA, Gonzalez MA, et al. Correlation between fractional flow reserve and intravascular ultrasound lumen area in intermediate coronary artery stenosis. Cardiovasc Revascularization Med. 2011;12:e41. https://doi.org/10.1016/j.carrev.2011.04.353 A comparison of IVUS-derived vessel cross-sectional areas with commonly utilized FFR threshold measurements for the determination of physiologic significance in intermediate coronary stenoses.

    Article  Google Scholar 

  16. Ma T, Zhou B, Hsiai TK, Shung KK. A review of intravascular ultrasound-based multimodal intravascular imaging: the synergistic approach to characterizing vulnerable plaques. Ultrason Imaging. 2016;38:314–31. https://doi.org/10.1177/0161734615604829.

    Article  PubMed  Google Scholar 

  17. Calvert PA, Obaid DR, O’Sullivan M, Shapiro LM, McNab D, Densem CG, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: The VIVA (VH-IVUS in vulnerable atherosclerosis) study. JACC Cardiovasc Imaging. 2011;4:894–901. https://doi.org/10.1016/J.JCMG.2011.05.005.

    Article  PubMed  Google Scholar 

  18. Cheng JM, Garcia-Garcia HM, de Boer SPM, Kardys I, Heo JH, Akkerhuis KM, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J. 2014;35:639–47. https://doi.org/10.1093/eurheartj/eht484.

    Article  PubMed  Google Scholar 

  19. Van Herck J, De Meyer G, Ennekens G, Van Herck P, Herman A, Vrints C. Validation of in vivo plaque characterisation by virtual histology in a rabbit model of atherosclerosis. EuroIntervention. 2009;5:149–56.

    Article  PubMed  Google Scholar 

  20. Brown AJ, Obaid DR, Costopoulos C, Parker RA, Calvert PA, Teng Z, et al. Direct comparison of virtual-histology intravascular ultrasound and optical coherence tomography imaging for identification of thin-cap fibroatheroma. Circ Cardiovasc Imaging. 2015;8:e003487. https://doi.org/10.1161/CIRCIMAGING.115.003487.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moreno PR. The high-risk thin-cap fibroatheroma: a new kid on the block. Circ Cardiovasc Interv. 2009;2:500–2. https://doi.org/10.1161/CIRCINTERVENTIONS.109.922146.

    Article  PubMed  Google Scholar 

  22. •• Witzenbichler B, Maehara A, Weisz G, Neumann FJ, Rinaldi MJ, Metzger DC, et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the assessment of dual antiplatelet therapy with drug-eluting stents (ADAPT-DES) study. Circulation. 2014;129:463–70. https://doi.org/10.1161/CIRCULATIONAHA.113.003942 A prespecified subanalysis of a multicenter prospective trial which demonstrated a significant reduction in stent thrombosis, myocardial infarction, and composite MACE in patients with IVUS-guided PCI versus angiography alone.

    Article  CAS  PubMed  Google Scholar 

  23. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16. https://doi.org/10.1056/NEJMoa070829.

    Article  CAS  PubMed  Google Scholar 

  24. Nishigaki K, Yamazaki T, Kitabatake A, Yamaguchi T, Kanmatsuse K, Kodama I, et al. Percutaneous coronary intervention plus medical therapy reduces the incidence of acute coronary syndrome more effectively than initial medical therapy only among patients with low-risk coronary artery disease a randomized, comparative, multicenter study 2008.

  25. • Zhang Y-J, Pang S, Chen X-Y, Bourantas CV, Pan D-R, Dong S-J, et al. Comparison of intravascular ultrasound guided versus angiography guided drug eluting stent implantation: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2015;15:153. https://doi.org/10.1186/s12872-015-0144-8 A systematic review and meta-analysis of patients receiving DES with or without IVUS guidance.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Klersy C, Ferlini M, Raisaro A, Scotti V, Balduini A, Curti M, et al. Use of IVUS guided coronary stenting with drug eluting stent: a systematic review and meta-analysis of randomized controlled clinical trials and high quality observational studies. Int J Cardiol. 2013;170:54–63.

    Article  PubMed  Google Scholar 

  27. • Ahn JM, Kang SJ, Yoon SH, Park HW, Kang SM, Lee JY, et al. Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies. Am J Cardiol. 2014;113:1338–47. https://doi.org/10.1016/j.amjcard.2013.12.043 A meta-analysis assessing outcomes after IVUS-guided versus angiographically-guided DES placement.

    Article  PubMed  Google Scholar 

  28. Elgendy IY, Mahmoud AN, Elgendy AY, Bavry AA. Outcomes with intravascular ultrasound-guided stent implantation. Circ Cardiovasc Interv. 2016;9:e003700. https://doi.org/10.1161/CIRCINTERVENTIONS.116.003700.

    Article  CAS  PubMed  Google Scholar 

  29. Jang J-S, Song Y-J, Kang W, Jin H-Y, Seo J-S, Yang T-H, et al. Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis. JACC Cardiovasc Interv. 2014;7:233–43. https://doi.org/10.1016/j.jcin.2013.09.013.

    Article  PubMed  Google Scholar 

  30. Shin D-H, Hong S-J, Mintz GS, Kim J-S, Kim B-K, Ko Y-G, et al. Effects of intravascular ultrasound–guided versus angiography-guided new-generation drug-eluting stent implantation. JACC Cardiovasc Interv. 2016;9:2232–9. https://doi.org/10.1016/j.jcin.2016.07.021.

    Article  PubMed  Google Scholar 

  31. Hong SJ, Kim BK, Shin DH, Nam CM, Kim JS, Ko YG, et al. Effect of intravascular ultrasound-guided vs angiography- guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA - J Am Med Assoc. 2015;314:2155–63. https://doi.org/10.1001/jama.2015.15454.

    Article  CAS  Google Scholar 

  32. Park S-J, Kim Y-H, Park D-W, Lee S-W, Kim W-J, Suh J, et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Interv. 2009;2:167–77. https://doi.org/10.1161/CIRCINTERVENTIONS.108.799494.

    Article  PubMed  Google Scholar 

  33. Wang Y, Mintz GS, Gu Z, Qi Y, Wang Y, Liu M, et al. Meta-analysis and systematic review of intravascular ultrasound versus angiography-guided drug eluting stent implantation in left main coronary disease in 4592 patients. BMC Cardiovasc Disord. 2018;18:115. https://doi.org/10.1186/s12872-018-0843-z.

    Article  PubMed  PubMed Central  Google Scholar 

  34. • Kang S-J, Ahn J-M, Song H, Kim W-J, Lee J-Y, Park D-W, et al. Comprehensive intravascular ultrasound assessment of stent area and its impact on restenosis and adverse cardiac events in 403 patients with unprotected left main disease. Circ Cardiovasc Interv. 2011;4:562–9. https://doi.org/10.1161/CIRCINTERVENTIONS.111.964643 A study assessing optimal IVUS stent area to predict in-stent restenosis for a DES in the LMCA.

    Article  PubMed  Google Scholar 

  35. Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, et al. ACCF/AHA/SCAI practice guideline for percutaneous coronary intervention: executive summary a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions 2011;124, 2574, 2609 doi:https://doi.org/10.1161/CIR.0b013e31823a5596.

  36. Sarno G, Lagerqvist B, Nilsson J, Frobert O, Hambraeus K, Varenhorst C, et al. Stent thrombosis in new-generation drug-eluting stents in patients with STEMI undergoing primary PCI. J Am Coll Cardiol. 2014;64:16–24. https://doi.org/10.1016/j.jacc.2014.04.022.

    Article  PubMed  Google Scholar 

  37. Gomez-Lara J, Salvatella N, Gonzalo N, Hernández-Hernández F, Fernandez-Nofrerias E, Sánchez-Recalde A, et al. IVUS-guided treatment strategies for definite late and very late stent thrombosis. EuroIntervention. 2016;12:e1355–65. https://doi.org/10.4244/EIJY15M12_08.

    Article  PubMed  Google Scholar 

  38. Kosonen P, Vikman S, Jensen LO, Lassen JF, Harnek J, Olivecrona GK, et al. Intravascular ultrasound assessed incomplete stent apposition and stent fracture in stent thrombosis after bare metal versus drug-eluting stent treatment the Nordic intravascular ultrasound study (NIVUS). Int J Cardiol. 2013;168:1010–6. https://doi.org/10.1016/j.ijcard.2012.10.033.

    Article  PubMed  Google Scholar 

  39. Yamanaga K, Tsujita K, Shimomura H, Nakamura Y, Ogura Y, Onoue Y, et al. Serial intravascular ultrasound assessment of very late stent thrombosis after sirolimus-eluting stent placement. J Cardiol. 2014;64:279–84. https://doi.org/10.1016/j.jjcc.2014.02.008.

    Article  PubMed  Google Scholar 

  40. Souteyrand G, Amabile N, Mangin L, Chabin X, Meneveau N, Cayla G, Vanzetto G, Barnay P, Trouillet C, Rioufol G, Rangé G, Teiger E, Delaunay R, Dubreuil O, Lhermusier T, Mulliez A, Levesque S, Belle L, Caussin C, Motreff P, PESTO Investigators. Mechanisms of stent thrombosis analysed by optical coherence tomography: insights from the national PESTO French registry. Eur Heart J 2016;37:1208–1216. doi:https://doi.org/10.1093/eurheartj/ehv711.

    Article  PubMed  Google Scholar 

  41. Karalis I, Ahmed TAHN, Jukema JW. Late acquired stent malapposition: why, when and how to handle? Heart. 2012;98:1529–36. https://doi.org/10.1136/heartjnl-2011-301220.

    Article  PubMed  Google Scholar 

  42. Hassan AKM, Bergheanu SC, Stijnen T, van der Hoeven BL, Snoep JD, Plevier JWM, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J. 2010;31:1172–80. https://doi.org/10.1093/eurheartj/ehn553.

    Article  CAS  PubMed  Google Scholar 

  43. Mintz GS. Intravascular imaging of coronary calcification and its clinical implications. JACC Cardiovasc Imaging. 2015;8:461–71. https://doi.org/10.1016/J.JCMG.2015.02.003.

    Article  PubMed  Google Scholar 

  44. Rana O, Shah NC, Wilson S, Swallow R, O’Kane P, Levy T. The impact of routine and intravascular ultrasound-guided high-pressure postdilatation after drug-eluting stent deployment: the STent OPtimization (STOP) study. J Invasive Cardiol. 2014;26:640–6.

    PubMed  Google Scholar 

  45. Okabe T, Mintz GS, Buch AN, Roy P, Hong YJ, Smith KA, et al. Intravascular ultrasound parameters associated with stent thrombosis after drug-eluting stent deployment. Am J Cardiol. 2007;100:615–20. https://doi.org/10.1016/J.AMJCARD.2007.03.072.

    Article  CAS  PubMed  Google Scholar 

  46. Liu X, Tsujita K, Maehara A, Mintz GS, Weisz G, Dangas GD, et al. Intravascular ultrasound assessment of the incidence and predictors of edge dissections after drug-eluting stent implantation. JACC Cardiovasc Interv. 2009;2:997–1004. https://doi.org/10.1016/j.jcin.2009.07.012.

    Article  PubMed  Google Scholar 

  47. Cheneau E, Leborgne L, Mintz GS, Kotani J, Pichard AD, Satler LF, et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108:43–7. https://doi.org/10.1161/01.CIR.0000078636.71728.40.

    Article  PubMed  Google Scholar 

  48. Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dipchand AI, et al. The registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report-2012 heart transplant demographics transplant volumes 2012. doi:https://doi.org/10.1016/j.healun.2012.08.002.

    Article  PubMed  Google Scholar 

  49. Kobashigawa JA, Tobis JM, Starling RC, Tuzcu EM, Smith AL, Valantine HA, et al. Multicenter intravascular ultrasound validation study among heart transplant recipients: outcomes after five years. J Am Coll Cardiol. 2005;45:1532–7. https://doi.org/10.1016/J.JACC.2005.02.035.

    Article  PubMed  Google Scholar 

  50. Tuzcu EM, Kapadia SR, Sachar R, Ziada KM, Crowe TD, Feng J, et al. Intravascular ultrasound evidence of angiographically silent progression in coronary atherosclerosis predicts long-term morbidity and mortality after cardiac transplantation. J Am Coll Cardiol. 2005;45:1538–42. https://doi.org/10.1016/J.JACC.2004.12.076.

    Article  PubMed  Google Scholar 

  51. Okada K, Fearon WF, Luikart H, Kitahara H, Otagiri K, Tanaka S, et al. Attenuated-signal plaque progression predicts long-term mortality after heart transplantation. J Am Coll Cardiol. 2016;68:382–92. https://doi.org/10.1016/j.jacc.2016.05.028.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Masetti M, Potena L, Nardozza M, Prestinenzi P, Taglieri N, Saia F, et al. Differential effect of everolimus on progression of early and late cardiac allograft vasculopathy in current clinical practice. Am J Transplant. 2013;13:1217–26. https://doi.org/10.1111/ajt.12208.

    Article  CAS  PubMed  Google Scholar 

  53. Kobashigawa JA, Pauly DF, Starling RC, Eisen H, Ross H, Wang SS, et al. A2310 IVUS Substudy Investigators. Cardiac allograft vasculopathy by intravascular ultrasound in heart transplant patients. Substudy fromthe everolimus versus mycophenolate mofetil randomized, multicenter trial. JACC Hear Fail. 2013;1:389–99. https://doi.org/10.1016/j.jchf.2013.07.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Nathan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wali, E., Nathan, S. What Is the Clinical Utility of Intravascular Ultrasound?. Curr Cardiol Rep 20, 122 (2018). https://doi.org/10.1007/s11886-018-1062-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-018-1062-z

Keywords

Navigation