Skip to main content
Log in

Skeletal Muscle Myopathy in Heart Failure: the Role of Ejection Fraction

  • Myocardial Disease (A Abbate, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes: (1) the structural and functional features coupled with pathophysiological factors responsible of skeletal muscle myopathy (SMM) in both heart failure with reduced (HFrEF) and preserved (HFpEF) ejection fraction and (2) the role of exercise as treatment of SMM in these HF-related phenotypes.

Recent Findings

The recent literature showed two main phenotypes of heart failure (HF): (1) HFrEF primarily due to a systolic dysfunction of the left ventricle and (2) HFpEF, mainly related to a diastolic dysfunction. Exercise intolerance is one of most disabling symptoms of HF and it is shown that persists after the normalization of the central hemodynamic impairments by therapy and/or cardiac surgery including heart transplant. A specific skeletal muscle myopathy (SMM) has been defined as one of the main causes of exercise intolerance in HF.

Summary

The SMM has been well described in the last 20 years in the HFrEF; on the contrary, few studies are available in HFpEF. Recent evidences have revealed that exercise training counteracts HF-related SMM and in turn ameliorates exercise intolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major Importance

  1. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2163–96.

    Article  PubMed  Google Scholar 

  2. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Executive summary: heart disease and stroke statistics--2016 update: a report from the American Heart Association. Circulation. 2016;133(4):447–54.

    Article  Google Scholar 

  3. Chen J, Dharmarajan K, Wang Y, Krumholz HM. National trends in heart failure hospital stay rates, 2001 to 2009. J Am Coll Cardiol. 2013;61(10):1078–88.

    Article  PubMed  PubMed Central  Google Scholar 

  4. •• Butler J, Fonarow GC, Zile MR, Lam CS, Roessig L, Schelbert EB, et al. Developing therapies for heart failure with preserved ejection fraction: current state and future directions. JACC Heart Fail. 2014;2(2):97–112. This study provides the current state of the art for new therapeutic apporoches in patients with heart failure with preserved ejection fraction.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ellingsen O, Halle M, Conraads V, Stoylen A, Dalen H, Delagardelle C, et al. High-intensity interval training in patients with heart failure with reduced ejection fraction. Circulation. 2017;135(9):839–49.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314.

    Article  PubMed  Google Scholar 

  7. Little WC, Zile MR. HFpEF: cardiovascular abnormalities not just comorbidities. Circ Heart Fail. 2012;5(6):669–71.

    Article  PubMed  Google Scholar 

  8. Lekavich CL, Barksdale DJ, Neelon V, Wu JR. Heart failure preserved ejection fraction (HFpEF): an integrated and strategic review. Heart Fail Rev. 2015;20(6):643–53.

    Article  CAS  PubMed  Google Scholar 

  9. Bacurau AV, Cunha TF, Souza RW, Voltarelli VA, Gabriel-Costa D, Brum PC. Aerobic exercise and pharmacological therapies for skeletal myopathy in heart failure: similarities and differences. Oxidative Med Cell Longev. 2016;2016:4374671.

    Article  Google Scholar 

  10. Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr. 2006;83(4):735–43.

    Article  CAS  PubMed  Google Scholar 

  11. Sarma S, Levine BD. Soothing the sleeping giant: improving skeletal muscle oxygen kinetics and exercise intolerance in HFpEF. J Appl Physiol (1985). 2015;119(6):734–8.

    Article  CAS  Google Scholar 

  12. van Empel V, Brunner-La Rocca HP. Inflammation in HFpEF: key or circumstantial? Int J Cardiol. 2015;189:259–63.

    Article  PubMed  Google Scholar 

  13. Sullivan MJ, Higginbotham MB, Cobb FR. Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation. 1988;78(3):506–15.

    Article  CAS  PubMed  Google Scholar 

  14. Loncar G, Springer J, Anker M, Doehner W, Lainscak M. Cardiac cachexia: hic et nunc. J Cachexia Sarcopenia Muscle. 2016;7(3):246–60.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Haykowsky MJ, Tomczak CR, Scott JM, Paterson DI, Kitzman DW. Determinants of exercise intolerance in patients with heart failure and reduced or preserved ejection fraction. J Appl Physiol (1985). 2015;119(6):739–44.

    Article  CAS  Google Scholar 

  16. Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349(9058):1050–3.

    Article  CAS  PubMed  Google Scholar 

  17. Brum PC, Bacurau AV, Medeiros A, Ferreira JC, Vanzelli AS, Negrao CE. Aerobic exercise training in heart failure: impact on sympathetic hyperactivity and cardiac and skeletal muscle function. Braz J Med Biol Res. 2011;44(9):827–35.

    Article  CAS  PubMed  Google Scholar 

  18. Amann M, Venturelli M, Ives SJ, Morgan DE, Gmelch B, Witman MA, et al. Group III/IV muscle afferents impair limb blood flow in patients with chronic heart failure. Int J Cardiol. 2014:In press.

  19. Piepoli MF, Dimopoulos K, Concu A, Crisafulli A. Cardiovascular and ventilatory control during exercise in chronic heart failure: role of muscle reflexes. Int J Cardiol. 2008;130(1):3–10.

    Article  PubMed  Google Scholar 

  20. Garry MG. Abnormalities of the exercise pressor reflex in heart failure. Exerc Sport Sci Rev. 2011;39(4):167–76.

    PubMed  Google Scholar 

  21. Notarius CF, Atchison DJ, Floras JS. Impact of heart failure and exercise capacity on sympathetic response to handgrip exercise. Am J Physiol Heart Circ Physiol. 2001;280(3):H969–76.

    Article  CAS  PubMed  Google Scholar 

  22. Piepoli MF, Coats AJ. Increased metaboreceptor stimulation explains the exaggerated exercise pressor reflex seen in heart failure. J Appl Physiol. 2007;102(1):494–6. discussion 6-7

    Article  PubMed  Google Scholar 

  23. Middlekauff HR, Sinoway LI. Increased mechanoreceptor stimulation explains the exaggerated exercise pressor reflex seen in heart failure. J Appl Physiol. 2007;102(1):492–4. discussion 6

    Article  PubMed  Google Scholar 

  24. Olson TP, Joyner MJ, Eisenach JH, Curry TB, Johnson BD. Influence of locomotor muscle afferent inhibition on the ventilatory response to exercise in heart failure. Exp Physiol. 2014;99(2):414–26.

    Article  PubMed  Google Scholar 

  25. •• Tucker WJ, Lijauco CC, Hearon CM Jr, Angadi SS, Nelson MD, Sarma S, et al. Mechanisms of the improvement in peak VO2 with exercise training in heart failure with reduced or preserved ejection fraction. Heart Lung Circ. 2018;27(1):9–21. This study provides the physiological determinants for the exercise-induced ameliorations in patients with heart failure with reduced or preserved ejection fraction.

    Article  PubMed  Google Scholar 

  26. Andrade DC, Arce-Alvarez A, Toledo C, Diaz HS, Lucero C, Quintanilla RA, et al. Revisiting the physiological effects of exercise training on autonomic regulation and chemoreflex control in heart failure: does ejection fraction matter? Am J Physiol Heart Circ Physiol. 2018;314(3):H464–H74.

    Article  PubMed  Google Scholar 

  27. Akiyama E, Sugiyama S, Matsuzawa Y, Konishi M, Suzuki H, Nozaki T, et al. Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol. 2012;60(18):1778–86.

    Article  PubMed  Google Scholar 

  28. Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes. 2015;64(3):663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kelly A, Li C, Gao Z, Stanley CA, Matschinsky FM. Glutaminolysis and insulin secretion: from bedside to bench and back. Diabetes. 2002;51(Suppl 3):S421–6.

    Article  CAS  PubMed  Google Scholar 

  30. Pasini E, Aquilani R, Dioguardi FS, D'Antona G, Gheorghiade M, Taegtmeyer H. Hypercatabolic syndrome: molecular basis and effects of nutritional supplements with amino acids. Am J Cardiol. 2008;101(11A):11E–5E.

    Article  CAS  PubMed  Google Scholar 

  31. Anker SD, Chua TP, Ponikowski P, Harrington D, Swan JW, Kox WJ, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96(2):526–34.

    Article  CAS  PubMed  Google Scholar 

  32. Tromp J, Khan MA, Klip IT, Meyer S, de Boer RA, Jaarsma T, et al. Biomarker Profiles in Heart Failure Patients With Preserved and Reduced Ejection Fraction. J Am Heart Assoc. 2017;6(4).

  33. Sciarretta S, Ferrucci A, Ciavarella GM, De Paolis P, Venturelli V, Tocci G, et al. Markers of inflammation and fibrosis are related to cardiovascular damage in hypertensive patients with metabolic syndrome. Am J Hypertens. 2007;20(7):784–91.

    Article  CAS  PubMed  Google Scholar 

  34. Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, Hauer K, et al. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol. 1995;25(6):1239–49.

    Article  CAS  PubMed  Google Scholar 

  35. Hambrecht R, Gielen S, Linke A, Fiehn E, Yu J, Walther C, et al. Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial. JAMA. 2000;283(23):3095–101.

    Article  CAS  PubMed  Google Scholar 

  36. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94.

    Article  PubMed  Google Scholar 

  37. Erbs S, Hollriegel R, Linke A, Beck EB, Adams V, Gielen S, et al. Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ Heart Fail. 2010;3(4):486–94.

    Article  PubMed  Google Scholar 

  38. Esposito F, Reese V, Shabetai R, Wagner PD, Richardson RS. Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: the role of skeletal muscle convective and diffusive oxygen transport. J Am Coll Cardiol. 2011;58(13):1353–62.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fu TC, Yang NI, Wang CH, Cherng WJ, Chou SL, Pan TL, et al. Aerobic interval training elicits different hemodynamic adaptations between heart failure patients with preserved and reduced ejection fraction. Am J Phys Med Rehabil. 2016;95(1):15–27.

    Article  PubMed  Google Scholar 

  40. Munch GW, Iepsen UW, Ryrso CK, Rosenmeier JB, Pedersen BK, Mortensen SP. Effect of 6 wk of high-intensity one-legged cycling on functional sympatholysis and ATP signaling in patients with heart failure. Am J Physiol Heart Circ Physiol. 2018;314(3):H616–h26.

    PubMed  Google Scholar 

  41. Franciosa JA, Park M, Levine TB. Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol. 1981;47(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  42. Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, et al. Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation. 1992;85(4):1364–73.

    Article  CAS  PubMed  Google Scholar 

  43. Buller NP, Jones D, Poole-Wilson PA. Direct measurement of skeletal muscle fatigue in patients with chronic heart failure. Br Heart J. 1991;65(1):20–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H. Skeletal muscle abnormalities in heart failure. Int Heart J. 2015;56(5):475–84.

    Article  CAS  PubMed  Google Scholar 

  45. Vescovo G, Dalla Libera L, Serafini F, Leprotti C, Facchin L, Volterrani M, et al. Improved exercise tolerance after losartan and enalapril in heart failure: correlation with changes in skeletal muscle myosin heavy chain composition. Circulation. 1998;98(17):1742–9.

    Article  CAS  PubMed  Google Scholar 

  46. Dunning DG, Lange BM. The effect of feedback on student use of interpersonal communication skills. J Dent Educ. 1987;51(10):594–6.

    CAS  PubMed  Google Scholar 

  47. Massie BM, Conway M, Yonge R, Frostick S, Sleight P, Ledingham J, et al. 31P nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with congestive heart failure. Am J Cardiol. 1987;60(4):309–15.

    Article  CAS  PubMed  Google Scholar 

  48. Adams V, Jiang H, Yu J, Mobius-Winkler S, Fiehn E, Linke A, et al. Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol. 1999;33(4):959–65.

    Article  CAS  PubMed  Google Scholar 

  49. Esposito F, Mathieu-Costello O, Shabetai R, Wagner PD, Richardson RS. Limited maximal exercise capacity in patients with chronic heart failure: partitioning the contributors. J Am Coll Cardiol. 2010;55(18):1945–54.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Smart N, Marwick TH. Exercise training for patients with heart failure: a systematic review of factors that improve mortality and morbidity. Am J Med. 2004;116(10):693–706.

    Article  PubMed  Google Scholar 

  51. Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAlister FA, Clark AM. A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed. J Am Coll Cardiol. 2007;49:2329–36.

    Article  PubMed  Google Scholar 

  52. Dubach P, Myers J, Dziekan G, Goebbels U, Reinhart W, Muller P, et al. Effect of high intensity exercise training on central hemodynamic responses to exercise in men with reduced left ventricular function. J Am Coll Cardiol. 1997;29(7):1591–8.

    Article  CAS  PubMed  Google Scholar 

  53. Coats AJ, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L, et al. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation. 1992;85(6):2119–31.

    Article  CAS  PubMed  Google Scholar 

  54. Belardinelli R, Georgiou D, Cianci G, Purcaro A. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation. 1999;99(9):1173–82.

    Article  CAS  PubMed  Google Scholar 

  55. Fu M, Zhou J, Sun A, Zhang S, Zhang C, Zou Y, et al. Efficacy of ACE inhibitors in chronic heart failure with preserved ejection fraction--a meta analysis of 7 prospective clinical studies. Int J Cardiol. 2012;155(1):33–8.

    Article  PubMed  Google Scholar 

  56. Vuckovic KM, Piano MR, Phillips SA. Effects of exercise interventions on peripheral vascular endothelial vasoreactivity in patients with heart failure with reduced ejection fraction. Heart Lung Circ. 2013;22(5):328–40.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Linke A, Schoene N, Gielen S, Hofer J, Erbs S, Schuler G, et al. Endothelial dysfunction in patients with chronic heart failure: systemic effects of lower-limb exercise training. J Am Coll Cardiol. 2001;37(2):392–7.

    Article  CAS  PubMed  Google Scholar 

  58. Belardinelli R, Lacalaprice F, Faccenda E, Purcaro A, Perna G. Effects of short-term moderate exercise training on sexual function in male patients with chronic stable heart failure. Int J Cardiol. 2005;101(1):83–90.

    Article  PubMed  Google Scholar 

  59. Magnusson G, Gordon A, Kaijser L, Sylven C, Isberg B, Karpakka J, et al. High intensity knee extensor training, in patients with chronic heart failure. Major skeletal muscle improvement. Eur Heart J. 1996;17(7):1048–55.

    Article  CAS  PubMed  Google Scholar 

  60. Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L, et al. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol. 1997;29(5):1067–73.

    Article  CAS  PubMed  Google Scholar 

  61. Tyni-Lenne R, Gordon A, Jensen-Urstad M, Dencker K, Jansson E, Sylven C. Aerobic training involving a minor muscle mass shows greater efficiency than training involving a major muscle mass in chronic heart failure patients. J Card Fail. 1999;5(4):300–7.

    Article  CAS  PubMed  Google Scholar 

  62. Haykowsky MJ, Timmons MP, Kruger C, McNeely M, Taylor DA, Clark AM. Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am J Cardiol. 2013;111(10):1466–9.

    Article  PubMed  Google Scholar 

  63. Bowen TS, Rolim NP, Fischer T, Baekkerud FH, Medeiros A, Werner S, et al. Heart failure with preserved ejection fraction induces molecular, mitochondrial, histological, and functional alterations in rat respiratory and limb skeletal muscle. Eur J Heart Fail. 2015;17(3):263–72.

    Article  CAS  PubMed  Google Scholar 

  64. Weiss K, Schar M, Panjrath GS, Zhang Y, Sharma K, Bottomley PA, et al. Fatigability, Exercise Intolerance, and Abnormal Skeletal Muscle Energetics in Heart Failure. Circ Heart Fail. 2017;10(7)

  65. Molina AJ, Bharadwaj MS, Van Horn C, Nicklas BJ, Lyles MF, Eggebeen J, et al. Skeletal muscle mitochondrial content, oxidative capacity, and Mfn2 expression are reduced in older patients with heart failure and preserved ejection fraction and are related to exercise intolerance. JACC Heart Fail. 2016;4(8):636–45.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 2008;1777(9):1092–7.

    Article  CAS  PubMed  Google Scholar 

  67. Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol. 2011;58(3):265–74.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dhakal BP, Malhotra R, Murphy RM, Pappagianopoulos PP, Baggish AL, Weiner RB, et al. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: the role of abnormal peripheral oxygen extraction. Circ Heart Fail. 2015;8(2):286–94.

    Article  PubMed  Google Scholar 

  69. Montero D, Diaz-Cañestro C. Determinants of exercise intolerance in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Int J Cardiol. 2018;254:224–9.

    Article  PubMed  Google Scholar 

  70. Dieberg G, Ismail H, Giallauria F, Smart NA. Clinical outcomes and cardiovascular responses to exercise training in heart failure patients with preserved ejection fraction: a systematic review and meta-analysis. J Appl Physiol (1985). 2015;119(6):726–33.

    Article  CAS  Google Scholar 

  71. Pandey A, Darden D, Berry JD. Low fitness in midlife: a novel therapeutic target for heart failure with preserved ejection fraction prevention. Prog Cardiovasc Dis. 2015;58(1):87–93.

    Article  PubMed  Google Scholar 

  72. Edelmann F, Gelbrich G, Dungen HD, Frohling S, Wachter R, Stahrenberg R, et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the ex-DHF (exercise training in diastolic heart failure) pilot study. J Am Coll Cardiol. 2011;58(17):1780–91.

    Article  PubMed  Google Scholar 

  73. Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315(1):36–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. •• Kitzman DW, Brubaker PH, Herrington DM, Morgan TM, Stewart KP, Hundley WG, et al. Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. J Am Coll Cardiol. 2013;62(7):584–92. This clinical trial provides the evidence of exercise-induced ameliorations in patients with heart failure with preserved ejection fraction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J Am Coll Cardiol. 2012;60(2):120–8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fujimoto N, Prasad A, Hastings JL, Bhella PS, Shibata S, Palmer D, et al. Cardiovascular effects of 1 year of progressive endurance exercise training in patients with heart failure with preserved ejection fraction. Am Heart J. 2012;164(6):869–77.

    Article  PubMed  Google Scholar 

  77. Chan E, Giallauria F, Vigorito C, Smart NA. Exercise training in heart failure patients with preserved ejection fraction: a systematic review and meta-analysis. Monaldi Arch Chest Dis. 2016;86(1–2):759.

    PubMed  Google Scholar 

  78. Angadi SS, Mookadam F, Lee CD, Tucker WJ, Haykowsky MJ, Gaesser GA. High-intensity interval training vs. moderate-intensity continuous exercise training in heart failure with preserved ejection fraction: a pilot study. J Appl Physiol (1985). 2015;119(6):753–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Venturelli.

Ethics declarations

Conflict of Interest

Mara Paneroni, Evasio Pasini, Laura Comini, Michele Vitacca, Federico Schena, Simonetta Scalvini, and Massimo Venturelli declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Myocardial Disease

Paneroni Mara and Pasini Evasio equally contribute to this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paneroni, M., Pasini, E., Comini, L. et al. Skeletal Muscle Myopathy in Heart Failure: the Role of Ejection Fraction. Curr Cardiol Rep 20, 116 (2018). https://doi.org/10.1007/s11886-018-1056-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-018-1056-x

Keywords

Navigation