Skip to main content

Advertisement

Log in

Nutrition and Gastrointestinal Microbiota, Microbial-Derived Secondary Bile Acids, and Cardiovascular Disease

  • Nutrition (P. Kris-Etherton and K. Petersen, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal is to review the connection between gut microbiota and cardiovascular disease, with specific emphasis on bile acids, and the influence of diet in modulating this relationship.

Recent Findings

Bile acids exert a much broader range of biological functions than initially recognized, including regulation of cardiovascular function through direct and indirect mechanisms. There is a bi-directional relationship between gut microbiota modulation of bile acid–signaling properties, and their effects on gut microbiota composition. Evidence, primarily from rodent models and limited human trials, suggest that dietary modulation of the gut microbiome significantly impacts bile acid metabolism and subsequently host physiological response(s).

Summary

Available evidence suggests that the link between diet, gut microbiota, and CVD risk is potentially mediated via bile acid effects on diverse metabolic pathways. However, further studies are needed to confirm/expand and translate these findings in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  PubMed  Google Scholar 

  3. Sheflin AM, Melby CL, Carbonero F, Weir TL. Linking dietary patterns with gut microbial composition and function. Gut Microbes. 2017;8(2):113–29.

    Article  CAS  PubMed  Google Scholar 

  4. Jonsson AL, Bäckhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  5. • Wang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 2018: 9(5):416–431. Detailed overview of various gut-derived metabolites and their role in CVD.

  6. Martinez KB, Leone V, Chang EB. Microbial metabolites in health and disease: navigating the unknown in search of function. J Biol Chem. 2017;292(21):8553–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. • Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease (JACC State-of-the-Art Review). J Am Coll Cardiol. 2019: 73(16);2089–2105. Recent review focused on human intestinal microbiota and its potential modulation to improve cardiovascular health.

  8. Fu BC, Hullar MAJ, Randolph TW, et al. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Am J Clin Nutr. 2020:13(10).

  9. Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50.

    Article  PubMed  CAS  Google Scholar 

  10. McMillin M, DeMorrow S. Effects of bile acids on neurological function and disease. FASEB J. 2016;30(11):3658–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng Q, Liu Z, Zhong S, et al. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci Rep. 2016:6(22525).

  12. Lin CJ, Chuang CK, Jayakumar T, Liu HL, Pan CF, Wang TJ, et al. Serum p-cresyl sulfate predicts cardiovascular disease and mortality in elderly hemodialysis patients. Arch Med Sci. 2013;9(4):662–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poesen R, Claes K, Evenepoel P, de Loor H, Augustijns P, Kuypers D, et al. Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol. 2016;27(11):3479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Int Med. 1999;159(22):2647–58.

    Article  CAS  Google Scholar 

  15. Šarenac TM, Mikov M. Bile acid synthesis: from nature to the chemical modification and synthesis and their applications as drugs and nutrients. Front Pharmacol. 2018;9(939).

  16. Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Molec Med. 2015;21(11):702–14.

    Article  CAS  Google Scholar 

  17. Alnouti Y. Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci. 2009;108(2):225–46.

    Article  CAS  PubMed  Google Scholar 

  18. Hofmann AF, Hagey LR. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008;65(16):2461–83.

    Article  CAS  PubMed  Google Scholar 

  19. Di Ciaula A, Garruti G, Lunardi Baccetto R, et al. Bile acid physiology. Ann Hepatol 2017: 16(Suppl. 1: s3–105.):s4-s14.

  20. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74.

    Article  CAS  PubMed  Google Scholar 

  21. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102(6):731–44.

    Article  CAS  PubMed  Google Scholar 

  22. Norlin M, Wikvall K. Enzymes in the conversion of cholesterol into bile acids. Curr Mol Med. 2007;7(2):199–218.

    Article  CAS  PubMed  Google Scholar 

  23. Hundt M, Basit H. John S. Bile Secretion: Physiology; 2020.

    Google Scholar 

  24. • Molinero N, Ruiz L, Sánchez B, Margolles A, Delgado S. Intestinal bacteria interplay with bile and cholesterol metabolism: implications on host physiology. Front Physiol 2019: 10:185–185. A detailed overview of bile acid physiology and its reciprocal relationship with gut microbiota.

  25. Chiang JYL. Bile acids: regulation of synthesis. J Lip Res. 2009;50(10):1955–66.

    Article  CAS  Google Scholar 

  26. Busnelli M, Manzini S, Chiesa G. The gut microbiota affects host pathophysiology as an endocrine organ: a focus on cardiovascular disease. Nutrients 2019: 12(1).

  27. Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol. 2019;12(4):851–61.

    Article  CAS  PubMed  Google Scholar 

  28. Sarafian MH, Lewis MR, Pechlivanis A, Ralphs S, McPhail MJW, Patel VC, et al. Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry. Anal Chem. 2015;87(19):9662–70.

    Article  CAS  PubMed  Google Scholar 

  29. Kliewer SA, Mangelsdorf DJ. Bile acids as hormones: the FXR-FGF15/19 pathway. Dig Dis. 2015;33(3):327–31.

    Article  PubMed  Google Scholar 

  30. Wang C, Zhu C, Shao L, Ye J, Shen Y, Ren Y. Role of bile acids in dysbiosis and treatment of nonalcoholic fatty liver disease. Mediat Inflamm. 2019;2019:7659509.

    Google Scholar 

  31. Schaap FG, Trauner M, Jansen PLM. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. 2014;11(1):55–67.

    Article  CAS  PubMed  Google Scholar 

  32. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284(5418):1362–5.

    Article  CAS  PubMed  Google Scholar 

  33. Song P, Rockwell CE, Cui JY, Klaassen CD. Individual bile acids have differential effects on bile acid signaling in mice. Toxicol Appl Pharmacol. 2015;283(1):57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khurana S, Raufman J-P, Pallone TL. Bile acids regulate cardiovascular function. Clin Trans Sci. 2011;4(3):210–8.

    Article  CAS  Google Scholar 

  35. Sannasiddappa TH, Lund PA, Clarke SR. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front Microbiol. 2017;8:1581.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15(2):111–28.

    Article  CAS  PubMed  Google Scholar 

  37. Trottier J, Caron P, Straka RJ, Barbier O. Profile of serum bile acids in noncholestatic volunteers: gender-related differences in response to fenofibrate. Clin Pharmacol Ther. 2011;90(2):279–86.

    Article  CAS  PubMed  Google Scholar 

  38. Charach G, Karniel E, Novikov I, Galin L, Vons S, Grosskopf I, et al. Reduced bile acid excretion is an independent risk factor for stroke and mortality: a prospective follow-up study. Atherosclerosis. 2020;293:79–85.

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Zhang D, He Y, et al. Investigation of novel metabolites potentially involved in the pathogenesis of coronary heart disease using a UHPLC-QTOF/MS-based metabolomics approach. Sci Rep. 2017;7(1):017–15737.

    Article  CAS  Google Scholar 

  40. Charach G, Grosskopf I, Rabinovich A, Shochat M, Weintraub M, Rabinovich P. The association of bile acid excretion and atherosclerotic coronary artery disease. Ther Adv Gastroenterol. 2011;4(2):95–101.

    Article  CAS  Google Scholar 

  41. Rajaratnam RA, Gylling H, Miettinen TA. Cholesterol absorption, synthesis, and fecal output in postmenopausal women with and without coronary artery disease. Arterioscler Thromb Vasc Biol. 2001;21(10):1650–5.

    Article  CAS  PubMed  Google Scholar 

  42. Li W, Shu S, Cheng L, Hao X, Wang L, Wu Y, et al. Fasting serum total bile acid level is associated with coronary artery disease, myocardial infarction and severity of coronary lesions. Atherosclerosis. 2020;292:193–200.

    Article  CAS  PubMed  Google Scholar 

  43. Patti ME, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity. 2009;17(9):1671–7.

    Article  CAS  PubMed  Google Scholar 

  44. Sun W, Zhang D, Wang Z, et al. Insulin resistance is associated with total bile acid level in type 2 diabetic and nondiabetic population: a cross-sectional study. Medicine. 2016;95(10):002778.

  45. Battson ML, Lee DM, Weir TL, Gentile CL. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem. 2018;56:1–15.

    Article  CAS  PubMed  Google Scholar 

  46. Vasavan T, Ferraro E, Ibrahim E, Dixon P, Gorelik J, Williamson C. Heart and bile acids - clinical consequences of altered bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2018: 1864(4 Pt B):1345–1355.

  47. Zhang Y, Wang X, Vales C, Lee FY, Lee H, Lusis AJ, et al. FXR deficiency causes reduced atherosclerosis in Ldlr-/- mice. Arterioscler Thromb Vasc Biol. 2006;26(10):2316–21.

    Article  CAS  PubMed  Google Scholar 

  48. Pols TW, Nomura M, Harach T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 2011;14(6):747–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jadhav K, Xu Y, Li Y, et al. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol Metab. 2018;9:131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miyazaki-Anzai S, Masuda M, Kohno S, Levi M, Shiozaki Y, Keenan AL, et al. Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation. J Lip Res. 2018;59(9):1709–13.

    Article  CAS  Google Scholar 

  51. Ma J, Li H. The role of gut microbiota in atherosclerosis and hypertension. Front Pharmacol. 2018;9:1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kundu S, Bansal S, Muthukumarasamy KM, Sachidanandan C, Motiani RK, Bajaj A. Deciphering the role of hydrophobic and hydrophilic bile acids in angiogenesis using in vitro and in vivo model systems. Medchemcomm. 2017;8(12):2248–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takahashi S, Luo Y, Ranjit S, et al. Bile acid sequestration reverses liver injury and prevents progression of NASH in Western diet-fed mice. J Biol Chem 2020:jbc.RA119.011913.

  54. Hofmann AF. Pharmacology of ursodeoxycholic acid, an enterohepatic drug. Scand J Gastroenterol Suppl. 1994;204:1–15.

    Article  CAS  PubMed  Google Scholar 

  55. Abenavoli L, Falalyeyeva T, Boccuto L, Tsyryuk O, Kobyliak N. Obeticholic acid: a new era in the treatment of nonalcoholic fatty liver Disease. Pharmaceuticals. 2018;11(4):104.

    Article  CAS  PubMed Central  Google Scholar 

  56. Ðanić M, Stanimirov B, Pavlović N, et al. Pharmacological applications of bile acids and their derivatives in the treatment of metabolic syndrome. Front Pharmacol. 2018:9(1382).

  57. Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):017–1175.

    Article  CAS  Google Scholar 

  58. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yokota A, Fukiya S, Islam KB, et al. Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes. 2012;3(5):455–9.

    Article  PubMed  Google Scholar 

  60. Bisschop PH, Bandsma RH, Stellaard F, et al. Low-fat, high-carbohydrate and high-fat, low-carbohydrate diets decrease primary bile acid synthesis in humans. Am J Clin Nutr. 2004;79(4):570–6.

    Article  CAS  PubMed  Google Scholar 

  61. Brassard D, Tessier-Grenier M, Allaire J, Rajendiran E, She Y, Ramprasath V, et al. Comparison of the impact of SFAs from cheese and butter on cardiometabolic risk factors: a randomized controlled trial. Am J Clin Nutr. 2017;105(4):800–9.

    Article  CAS  PubMed  Google Scholar 

  62. Mokkala K, Houttu N, Cansev T, Laitinen K. Interactions of dietary fat with the gut microbiota: evaluation of mechanisms and metabolic consequences. Clin Nutr. 2020;39(4):994–1018.

    Article  CAS  PubMed  Google Scholar 

  63. Devkota S, Chang EB. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig Dis. 2015;33(3):351–6.

    Article  PubMed  Google Scholar 

  64. Meng H, Matthan NR, Wu D, Li L, Rodríguez-Morató J, Cohen R, et al. Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women-randomized crossover trial. Am J Clin Nutr. 2019;110(2):305–15.

    Article  PubMed  Google Scholar 

  65. Madsen L, Myrmel LS, Fjære E, Liaset B, Kristiansen K. Links between dietary protein sources, the gut microbiota, and obesity. Front Physiol 2017: 8(1047).

  66. Alemán JO, Bokulich NA, Swann JR, et al. Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women. J Transl Med. 2018;16(1):018–1619.

    Article  CAS  Google Scholar 

  67. Arellano-Martínez GL, Granados O, Palacios-González B, Torres N, Medina-Vera I, Tovar AR. Soya protein stimulates bile acid excretion by the liver and intestine through direct and indirect pathways influenced by the presence of dietary cholesterol. Br J Nutr. 2014;111(12):2059–66.

    Article  PubMed  CAS  Google Scholar 

  68. Bortolotti M, Kreis R, Debard C, Cariou B, Faeh D, Chetiveaux M, et al. High protein intake reduces intrahepatocellular lipid deposition in humans. Am J Clin Nutr. 2009;90(4):1002–10.

    Article  CAS  PubMed  Google Scholar 

  69. Tomova A, Bukovsky I, Rembert E, et al. The effects of vegetarian and vegan diets on gut microbiota. Front Nutr. 2019:6(47).

  70. Trefflich I, Marschall HU, Giuseppe RD, et al. Associations between dietary patterns and bile acids-results from a cross-sectional study in vegans and omnivores. Nutrients. 2019:12(1).

  71. Watanabe K, Igarashi M, Li X, et al. Dietary soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent biotransformation of bile acids. PLoS One. 2018:13(8).

  72. Spielmann J, Stangl GI, Eder K. Dietary pea protein stimulates bile acid excretion and lowers hepatic cholesterol concentration in rats. J Anim Physiol Anim Nutr. 2008;92(6):683–93.

    Article  CAS  Google Scholar 

  73. Weickert MO, Hattersley JG, Kyrou I, et al. Effects of supplemented isoenergetic diets varying in cereal fiber and protein content on the bile acid metabolic signature and relation to insulin resistance. Nutr Diabetes. 2018;8(1):018–0020.

    Article  CAS  Google Scholar 

  74. Hills RD, Jr., Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients 2019: 11(7).

  75. Soliman GA. Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients 2019: 11(5).

  76. Gunness P, Michiels J, Vanhaecke L, Smet S, Kravchuk O, van de Meene A, et al. Reduction in circulating bile acid and restricted diffusion across the intestinal epithelium are associated with a decrease in blood cholesterol in the presence of oat β-glucan. FASEB J. 2016;30(12):4227–38.

    Article  CAS  PubMed  Google Scholar 

  77. Ginos BNR, Navarro SL, Schwarz Y, Gu H, Wang D, Randolph TW, et al. Circulating bile acids in healthy adults respond differently to a dietary pattern characterized by whole grains, legumes and fruits and vegetables compared to a diet high in refined grains and added sugars: a randomized, controlled, crossover feeding study. Metabolism. 2018;83:197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Connolly ML, Tzounis X, Tuohy KM, Lovegrove JA. Hypocholesterolemic and prebiotic effects of a whole-grain oat-based granola breakfast cereal in a cardio-metabolic “at risk” population. Front Microbiol 2016: 7(1675).

  79. Hollænder PL, Ross AB, Kristensen M. Whole-grain and blood lipid changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr. 2015;102(3):556–72.

    Article  PubMed  CAS  Google Scholar 

  80. Morton GJ, Kaiyala KJ, Foster-Schubert KE, Cummings DE, Schwartz MW. Carbohydrate feeding dissociates the postprandial FGF19 response from circulating bile acid levels in humans. J Clin Endocrinol Metab. 2014;99(2):2013–3129.

    Article  CAS  Google Scholar 

  81. Apro J, Beckman L, Angelin B, Rudling M. Influence of dietary sugar on cholesterol and bile acid metabolism in the rat: marked reduction of hepatic Abcg5/8 expression following sucrose ingestion. Biochem Biophys Res Comm. 2015;461(4):592–7.

    Article  CAS  PubMed  Google Scholar 

  82. Chambers KF, Day PE, Aboufarrag HT, Kroon PA. Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: a review. Nutrients 2019: 11(11).

  83. Rodríguez-Morató J, Matthan NR, Liu J, de la Torre R, Chen CO. Cranberries attenuate animal-based diet-induced changes in microbiota composition and functionality: a randomized crossover controlled feeding trial. J Nutr Biochem. 2018;62:76–86.

    Article  PubMed  CAS  Google Scholar 

  84. Holscher HD, Guetterman HM, Swanson KS, An R, Matthan NR, Lichtenstein AH, et al. Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary Bile acids, and health markers in healthy adults: a randomized controlled trial. J Nutr. 2018;148(6):861–7.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tindall AM, McLimans CJ, Petersen KS, Kris-Etherton PM, Lamendella R. Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. J Nutr. 2020;150(4):806–17.

    Article  PubMed  Google Scholar 

  86. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Koeth RA, Lam-Galvez BR, Kirsop J, Wang Z, Levison BS, Gu X, et al. L-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest. 2019;129(1):373–87.

    Article  PubMed  Google Scholar 

  88. Ding L, Chang M, Guo Y, et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018;17(1):018–0939.

    Article  CAS  Google Scholar 

  89. Pavlović N, Stankov K, Mikov M. Probiotics--interactions with bile acids and impact on cholesterol metabolism. Appl Biochem Biotechnol. 2012;168(7):1880–95.

    Article  PubMed  CAS  Google Scholar 

  90. Jones ML, Tomaro-Duchesneau C, Prakash S. The gut microbiome, probiotics, bile acids axis, and human health. Trends Microbiol. 2014;22(6):306–8.

    Article  CAS  PubMed  Google Scholar 

  91. Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. PNAS. 2014;111(20):7421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 2014;7(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  93. • Tindall AM, Petersen KS, Kris-Etherton PM. Dietary patterns affect the gut microbiome-the link to risk of cardiometabolic diseases. J Nutr 2018: 148(9):1402–1407. Brief review of the relationship between specific dietary patterns and cardiovascular disease.

  94. Bailey MA, Holscher HD. Microbiome-mediated effects of the Mediterranean diet on inflammation. Adv Nutr. 2018;9(3):193–206.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sheng L, Jena PK, Liu HX, et al. Gender differences in Bile acids and microbiota in relationship with gender dissimilarity in steatosis induced by diet and FXR inactivation. Sci Rep. 2017;7(1):017–01576.

    Article  CAS  Google Scholar 

  96. Baars A, Oosting A, Lohuis M, et al. Sex differences in lipid metabolism are affected by presence of the gut microbiota. Sci Rep. 2018;8(1):018–31695.

    Article  CAS  Google Scholar 

  97. Kaddurah-Daouk R, Baillie RA, Zhu H, Zeng ZB, Wiest MM, Nguyen UT, et al. Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS One. 2011;6(10):e25482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miyata M, Takamatsu Y, Kuribayashi H, Yamazoe Y. Administration of ampicillin elevates hepatic primary bile acid synthesis through suppression of ileal fibroblast growth factor 15 expression. J Pharmacol Exp Ther. 2009;331(3):1079–85.

    Article  CAS  PubMed  Google Scholar 

  99. Wang W, Cheng Z, Wang Y, Dai Y, Zhang X, Hu S. Role of bile acids in bariatric surgery. Front Physiol 2019: 10(374).

  100. Steiner C, Othman A, Saely CH, et al. Bile acid metabolites in serum: intraindividual variation and associations with coronary heart disease, metabolic syndrome and diabetes mellitus. PLoS One. 2011;6(11):14.

    Article  CAS  Google Scholar 

  101. Yin S, Su M, Xie G, Li X, Wei R, Liu C, et al. Factors affecting separation and detection of bile acids by liquid chromatography coupled with mass spectrometry in negative mode. Anal Bioanal Chem. 2017;409(23):5533–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y. Species differences in bile acids I. Plasma and urine bile acid composition. J Appl Toxicol. 2018;38(10):1323–35.

    Article  CAS  PubMed  Google Scholar 

  103. Rodríguez-Morató J, Pozo ÓJ, Marcos J. Targeting human urinary metabolome by LC-MS/MS: a review. Bioanalysis. 2018;10(7):489–516.

    Article  PubMed  CAS  Google Scholar 

  104. Steiner C, von Eckardstein A, Rentsch KM. Quantification of the 15 major human bile acids and their precursor 7α-hydroxy-4-cholesten-3-one in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2010;878(28):2870–80.

    Article  CAS  Google Scholar 

  105. Reinicke M, Schröter J, Müller-Klieser D, Helmschrodt C, Ceglarek U. Free oxysterols and bile acids including conjugates - simultaneous quantification in human plasma and cerebrospinal fluid by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2018;11:245–55.

    Article  CAS  Google Scholar 

  106. • Dutta M, Cai J, Gui W, Patterson AD. A review of analytical platforms for accurate bile acid measurement. Anal Bioanal Chem 2019: 411(19):4541–4549. Recent summary of different detection technologies commonly employed for the measurement of bile acids.

  107. Hosomi R, Matsudo A, Sugimoto K, Shimono T, Kanda S, Nishiyama T, et al. Dietary fat influences the expression of genes related to sterol metabolism and the composition of cecal microbiota and its metabolites in rats. J Oleo Sci. 2019;68(11):1133–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the US Department of Agriculture, under agreement no. 58-1950-4-401. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of authors, and do not necessarily reflect the views of the US Department of Agriculture, the National Institutes of Health. JRM acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 712949 (TECNIOspring PLUS) and from ACCIO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirupa R. Matthan.

Ethics declarations

Conflict of Interest

None of the authors have any conflicts of interest related to this article.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/ institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Morató, J., Matthan, N.R. Nutrition and Gastrointestinal Microbiota, Microbial-Derived Secondary Bile Acids, and Cardiovascular Disease. Curr Atheroscler Rep 22, 47 (2020). https://doi.org/10.1007/s11883-020-00863-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-020-00863-7

Keywords

Navigation