Skip to main content
Log in

Current E-Cigarette Research in the Context of Asthma

  • Allergies and the Environment (T Moran, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to integrate recent research on the respiratory immune effects of e-cigarettes with the pathogenesis of asthma to better understand how e-cigarettes may affect asthmatics and to note critical knowledge gaps regarding the effects of e-cigarettes on asthmatics.

Recent Findings

Human, rodent, and cell culture studies show that key cellular functions of epithelial cells, macrophages, and neutrophils are altered by e-cigarette exposure.

Summary

Because respiratory immunity is already dysregulated in asthma, further alteration of cellular function by e-cigarettes could impact asthma development, severity, and/or exacerbations. Future research is needed to more directly investigate this relationship using controlled human exposure studies and exposure of cell culture or animal models of asthma to e-cigarettes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cullen K, Ambrose B, Gentzke A, Apelberg B, Jamal A, King B. Notes from the field: use of electronic cigarettes and any tobacco product among middle and high school students — United States, 2011–2018. MMWR Morb Mortal Wkly Rep. 2018;67(44):1276–7. https://doi.org/10.15585/mmwr.mm6745a5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang T, Asman K, Gentzke A, et al. Tobacco product use among adults — United States, 2017. MMWR Morb Mortal Wkly Rep. 2017;67(45):1225–32. https://doi.org/10.15585/mmwr.mm6744a2.

    Article  Google Scholar 

  3. Leventhal AM, Miech R, Barrington-Trimis J, Johnston LD, O’Malley PM, Patrick ME. Flavors of e-cigarettes used by youths in the United States. Jama. 2019. https://doi.org/10.1001/jama.2019.17968.

  4. Gomajee R, El-Khoury F, Goldberg M, Zins M, Lemogne C, Wiernik E, et al. Association between electronic cigarette use and smoking reduction in France. JAMA Intern Med. 2019. https://doi.org/10.1001/jamainternmed.2019.1483.

  5. Hajek P, Phillips-Waller A, Przulj D, Pesola F, Myers Smith K, Bisal N, et al. A randomized trial of E-cigarettes versus nicotine-replacement therapy. N Engl J Med. 2019;380(7):629–37. https://doi.org/10.1056/NEJMoa1808779.

    Article  PubMed  Google Scholar 

  6. Cullen KA, Gentzke AS, Sawdey MD, Chang JT, Anic GM, Wang TW, et al. E-cigarette use among youth in the United States, 2019. Jama. 2019. https://doi.org/10.1001/jama.2019.18387.

  7. Escobar YH, Nipp G, Cui T, Petters SS, Surratt JD, Jaspers I. In vitro toxicity and chemical characterization of aerosol derived from electronic cigarette humectants using a newly developed exposure system. Chem Res Toxicol. 2020. https://doi.org/10.1021/acs.chemrestox.9b00490.

  8. Uchiyama S, Noguchi M, Sato A, Ishitsuka M, Inaba Y, Kunugita N. Determination of thermal decomposition products generated from E-cigarettes. Chem Res Toxicol. 2020;33(2):576–83. https://doi.org/10.1021/acs.chemrestox.9b00410.

    Article  CAS  PubMed  Google Scholar 

  9. Sleiman M, Logue JM, Montesinos VN, Russell ML, Litter MI, Gundel LA, et al. Emissions from electronic cigarettes: key parameters affecting the release of harmful chemicals. Environ Sci Technol. 2016;50(17):9644–51. https://doi.org/10.1021/acs.est.6b01741.

    Article  CAS  PubMed  Google Scholar 

  10. Cirillo S, Urena JF, Lambert JD, Vivarelli F, Canistro D, Paolini M, et al. Impact of electronic cigarette heating coil resistance on the production of reactive carbonyls, reactive oxygen species and induction of cytotoxicity in human lung cancer cells in vitro. Regul Toxicol Pharmacol : RTP. 2019;109:104500. https://doi.org/10.1016/j.yrtph.2019.104500.

    Article  CAS  PubMed  Google Scholar 

  11. Talih S, Salman R, El-Hage R, Karam E, Karaoghlanian N, El-Hellani A, et al. Characteristics and toxicant emissions of JUUL electronic cigarettes. Tob Control. 2019. https://doi.org/10.1136/tobaccocontrol-2018-054616.

  12. Omaiye EE, McWhirter KJ, Luo W, Pankow JF, Talbot P. High-nicotine electronic cigarette products: toxicity of JUUL fluids and aerosols correlates strongly with nicotine and some flavor chemical concentrations. Chem Res Toxicol. 2019;32(6):1058–69. https://doi.org/10.1021/acs.chemrestox.8b00381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. • Erythropel HC, Jabba SV, TM DW, Mendizabal M, Anastas PT, Jordt SE, et al. Formation of flavorant-propylene glycol adducts with novel toxicological properties in chemically unstable E-cigarette liquids. Nicotine Tob Res. 2018. https://doi.org/10.1093/ntr/nty192This paper demonstrates that common e-liquid flavoring chemicals can react with propylene glycol to form flavorant propylene glycol acetals that are carried over into the aerosol and that are biologically reactive. Though previous papers detected flavorant propylene glycol acetals, this is the first to specifically address their formation and biological effects.

  14. Erythropel HC, Davis LM, de Winter TM, Jordt SE, Anastas PT, O'Malley SS, et al. Flavorant-solvent reaction products and menthol in JUUL E-cigarettes and aerosol. Am J Prev Med. 2019;57(3):425–7. https://doi.org/10.1016/j.amepre.2019.04.004.

    Article  PubMed  Google Scholar 

  15. • Hickman E, Herrera CA, Jaspers I. Common E-cigarette flavoring chemicals impair neutrophil phagocytosis and oxidative burst. Chem Res Toxicol. 2019, 32(6):982–5. https://doi.org/10.1021/acs.chemrestox.9b00171This was the first paper to show the effects of specific flavoring chemicals on neutrophil function and to evaluate flavoring chemicals by chemical class.

  16. Huang J, Duan Z, Kwok J, Binns S, Vera LE, Kim Y, et al. Vaping versus JUULing: how the extraordinary growth and marketing of JUUL transformed the US retail e-cigarette market. Tob Control. 2019;28(2):146–51. https://doi.org/10.1136/tobaccocontrol-2018-054382.

    Article  PubMed  Google Scholar 

  17. Clapp PW, Jaspers I. Electronic cigarettes: their constituents and potential links to asthma. Curr Allergy Asthma Rep. 2017;17(11):79. https://doi.org/10.1007/s11882-017-0747-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mallock N, Trieu HL, Macziol M, Malke S, Katz A, Laux P, et al. Trendy e-cigarettes enter Europe: chemical characterization of JUUL pods and its aerosols. Arch Toxicol. 2020. https://doi.org/10.1007/s00204-020-02716-3.

  19. Harvanko AM, Havel CM, Jacob P, Benowitz NL. Characterization of nicotine salts in 23 electronic cigarette refill liquids. Nicotine Tob Res. 2019. https://doi.org/10.1093/ntr/ntz232.

  20. Gotts JE, Jordt SE, McConnell R, Tarran R. What are the respiratory effects of e-cigarettes? BMJ. 2019;366:l5275. https://doi.org/10.1136/bmj.l5275.

  21. Duffy B, Li L, Lu S, Durocher L, Dittmar M, Delaney-Baldwin E, et al. Analysis of cannabinoid-containing fluids in illicit vaping cartridges recovered from pulmonary injury patients: identification of vitamin E acetate as a major diluent. Toxics. 2020;8(1). https://doi.org/10.3390/toxics8010008.

  22. Choi K, Bernat D. E-cigarette use among Florida youth with and without asthma. Am J Prev Med. 2016;51(4):446–53. https://doi.org/10.1016/j.amepre.2016.03.010.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fedele DA, Barnett TE, Dekevich D, Gibson-Young LM, Martinasek M, Jagger MA. Prevalence of and beliefs about electronic cigarettes and hookah among high school students with asthma. Ann Epidemiol. 2016;26(12):865–9. https://doi.org/10.1016/j.annepidem.2016.10.004.

    Article  PubMed  Google Scholar 

  24. Kim SY, Sim S, Choi HG. Active, passive, and electronic cigarette smoking is associated with asthma in adolescents. Sci Rep. 2017;7(1):17789. https://doi.org/10.1038/s41598-017-17958-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Larsen K, Faulkner GEJ, Boak A, Hamilton HA, Mann RE, Irving HM, et al. Looking beyond cigarettes: are Ontario adolescents with asthma less likely to smoke e-cigarettes, marijuana, waterpipes or tobacco cigarettes? Respir Med. 2016;120:10–5. https://doi.org/10.1016/j.rmed.2016.09.013.

    Article  PubMed  Google Scholar 

  26. Martinasek MP, White RM, Wheldon CW, Gibson-Young L. Perceptions of non-traditional tobacco products between asthmatic and non-asthmatic college students. J Asthma. 2019;56(5):498–504. https://doi.org/10.1080/02770903.2018.1471705.

    Article  PubMed  Google Scholar 

  27. • Turner E, Fedele DA, Thompson L, Salloum RG. Patterns of electronic cigarette use in youth with asthma: results from a nationally representative sample. Ann Allergy Asthma Immunol. 2018;120(2):220–2. https://doi.org/10.1016/j.anai.2017.11.020This population study used data from Wave 1 of the PATH study to examine the e-cigarette use and asthma in youth (12-17 years old). The results of this study indicate that asthmatic youth were more likely to own an e-cigarette than non-asthmatic youth and that they did not percieve e-cigarettes to be as addictive as non-asthmatic youth.

    Article  PubMed  Google Scholar 

  28. Reid KM, Forrest JR, Porter L. Tobacco product use among youths with and without lifetime asthma - Florida, 2016. MMWR Morb Mortal Wkly Rep. 2018;67(21):599–601. https://doi.org/10.15585/mmwr.mm6721a2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Polosa R, Campagna D, Sands MF. Counseling patients with asthma and allergy about electronic cigarettes: an evidence-based approach. Ann Allergy Asthma Immunol. 2016;116(2):106–11. https://doi.org/10.1016/j.anai.2015.10.012.

    Article  PubMed  Google Scholar 

  30. Polosa R, Morjaria J, Caponnetto P, Caruso M, Strano S, Battaglia E, et al. Effect of smoking abstinence and reduction in asthmatic smokers switching to electronic cigarettes: evidence for harm reversal. Int J Environ Res Public Health. 2014;11(5):4965–77. https://doi.org/10.3390/ijerph110504965.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Polosa R, Morjaria JB, Caponnetto P, Caruso M, Campagna D, Amaradio MD, et al. Persisting long term benefits of smoking abstinence and reduction in asthmatic smokers who have switched to electronic cigarettes. Discov Med. 2016;21(114):99–108.

    PubMed  Google Scholar 

  32. •• Bhatta DN, Glantz SA. Association of E-cigarette use with respiratory disease among adults: a longitudinal analysis. Am J Prev Med. 2020;58(2):182–90. https://doi.org/10.1016/j.amepre.2019.07.028This study used data from Waves 1, 2, and 3 of the PATH study to determine whether initiation of e-cigarette use was associated with respiratory disease in adults. There were significant associations between former or current e-cigarette and respiratory disease, including asthma, controlling for factors such as smoking and other demographic and clinical variables.

    Article  PubMed  Google Scholar 

  33. Osei AD, Mirbolouk M, Orimoloye OA, Dzaye O, Uddin SMI, Dardari ZA, et al. The association between e-cigarette use and asthma among never combustible cigarette smokers: behavioral risk factor surveillance system (BRFSS) 2016 & 2017. BMC Pulm Med. 2019;19(1):180. https://doi.org/10.1186/s12890-019-0950-3.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jackson M, Singh KP, Lamb T, McIntosh S, Rahman I. Flavor preference and systemic immunoglobulin responses in E-cigarette users and Waterpipe and tobacco smokers: a pilot study. Int J Environ Res Public Health. 2020;17(2). https://doi.org/10.3390/ijerph17020640.

  35. •• Schweitzer RJ, Wills TA, Tam E, Pagano I, Choi K. E-cigarette use and asthma in a multiethnic sample of adolescents. Prev Med. 2017;105:226–31. https://doi.org/10.1016/j.ypmed.2017.09.023This study of high school students in Hawaii demonstrated that e-cigarette use is independently associated with asthma, controlling for confounding variables.

    Article  PubMed  PubMed Central  Google Scholar 

  36. • McConnell R, Barrington-Trimis JL, Wang K, Urman R, Hong H, Unger J, et al. Electronic cigarette use and respiratory symptoms in adolescents. Am J Respir Crit Care Med. 2017;195(8):1043–9. https://doi.org/10.1164/rccm.201604-0804OCThis was the first study to report increased risk of bronchitic symptoms in adolescents who use e-cigarettes, and this risk increased with increasing frequency of e-cigarette use.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cho JH, Paik SY. Association between electronic cigarette use and asthma among high school students in South Korea. PLoS One. 2016;11(3):e0151022. https://doi.org/10.1371/journal.pone.0151022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. • Bayly JE, Bernat D, Porter L, Choi K. Secondhand exposure to aerosols from electronic nicotine delivery systems and asthma exacerbations among youth with asthma. Chest. 2019;155(1):88–93. https://doi.org/10.1016/j.chest.2018.10.005This study of 11-17 year olds in Florida found that secondhand exposure to e-cigarette aerosol was associated with increased odds of asthma attack.

    Article  PubMed  Google Scholar 

  39. Lappas AS, Tzortzi AS, Konstantinidi EM, Teloniatis SI, Tzavara CK, Gennimata SA, et al. Short-term respiratory effects of e-cigarettes in healthy individuals and smokers with asthma. Respirology. 2018;23(3):291–7. https://doi.org/10.1111/resp.13180.

    Article  PubMed  Google Scholar 

  40. Boulay M, Henry C, Bossé Y, Boulet LP, Morissette MC. Acute effects of nicotine-free and flavour-free electronic cigarette use on lung functions in healthy and asthmatic individuals. Respir Res. 2017;18(1):33. https://doi.org/10.1186/s12931-017-0518-9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bradford LE, Rebuli ME, Ring BJ, Jaspers I, Clement KC, Loughlin CE. Danger in the vapor? ECMO for adolescents with status asthmaticus after vaping. J Asthma. 2019:1–5. https://doi.org/10.1080/02770903.2019.1643361.

  42. Clapp PW, Peden DB, Jaspers I. E-cigarettes, vaping-related pulmonary illnesses, and asthma: a perspective from inhalation toxicologists. J Allergy Clin Immunol. 2020;145(1):97–9. https://doi.org/10.1016/j.jaci.2019.11.001.

    Article  PubMed  Google Scholar 

  43. Chapman DG, Casey DT, Ather JL, Aliyeva M, Daphtary N, Lahue KG, et al. The effect of flavored E-cigarettes on murine allergic airways disease. Sci Rep. 2019;9(1):13671. https://doi.org/10.1038/s41598-019-50223-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bonser LR, Erle DJ. Airway mucus and asthma: the role of MUC5AC and MUC5B. J Clin Med. 2017;6(12):112. https://doi.org/10.3390/jcm6120112.

    Article  CAS  PubMed Central  Google Scholar 

  45. Lachowicz-Scroggins ME, Yuan S, Kerr SC, Dunican EM, Yu M, Carrington SD, et al. Abnormalities in MUC5AC and MUC5B protein in airway mucus in asthma. Am J Respir Crit Care Med. 2016;194(10):1296–9. https://doi.org/10.1164/rccm.201603-0526LE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mims JW. Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol. 2015;5(Suppl 1):S2–6. https://doi.org/10.1002/alr.21609.

    Article  PubMed  Google Scholar 

  47. •• Reidel B, Radicioni G, Clapp PW, Ford AA, Abdelwahab S, Rebuli ME, et al. E-cigarette use causes a unique innate immune response in the lung, involving increased neutrophilic activation and altered mucin secretion. Am J Respir Crit Care Med. 2018;197(4):492–501. https://doi.org/10.1164/rccm.201708-1590OCUsing induced sputum from e-cigarette users, nonsmokers, and smokers, the authors demonstrated that e-cigarette users have a unique respiratory innate immune profile, including increased markers of neutrophil activation. Additionally, neutrophils from e-cigarette users were more susceptible to phorbol 12-myristate 13-acetate-induced NETosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. •• Ghosh A, Coakley RC, Mascenik T, Rowell TR, Davis ES, Rogers K, et al. Chronic E-cigarette exposure alters the human bronchial epithelial proteome. Am J Respir Crit Care Med. 2018;198(1):67–76. https://doi.org/10.1164/rccm.201710-2033OCProteomic profiling of epithelial cells from e-cigarette users, nonsmokers, and smokers revealed that MUC5AC expression was increased in vapers, and this finding could be recapitulated by exposing human epithelial cell cultures and mice to aerosolized PG/VG.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. • Clapp PW, Lavrich KS, van Heusden CA, Lazarowski ER, Carson JL, Jaspers I. Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am J Physiol Lung Cell Mol Physiol. 2019;316(3):L470–l86. https://doi.org/10.1152/ajplung.00304.2018The authors exposed primary human bronchial epithelial cells to cinnamaldehyde-containing e-liquids and aerosols and demonstrated that cinnamaldehyde can impair ciliary beating and mitochondrial respiration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. • Chung S, Baumlin N, Dennis JS, Moore R, Salathe SF, Whitney PL, et al. Electronic cigarette vapor with nicotine causes airway Mucociliary dysfunction preferentially via TRPA1 receptors. Am J Respir Crit Care Med. 2019;200(9):1134–45. https://doi.org/10.1164/rccm.201811-2087OCThis study demonstrated impaired mucociliary function following exposure to e-cigarette aerosol both in vitro and in sheep in vivo and presented data to suggest that this occurs via TRPA1.

    Article  CAS  PubMed  Google Scholar 

  51. Yang H, Li S. Transient receptor potential Ankyrin 1 (TRPA1) channel and neurogenic inflammation in pathogenesis of asthma. Med Sci Monit. 2016;22:2917–23. https://doi.org/10.12659/msm.896557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bessac BF, Jordt SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda). 2008;23:360–70. https://doi.org/10.1152/physiol.00026.2008.

    Article  CAS  Google Scholar 

  53. Bartemes KR, Kita H. Dynamic role of epithelium-derived cytokines in asthma. Clin Immunol. 2012;143(3):222–35. https://doi.org/10.1016/j.clim.2012.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gerloff J, Sundar IK, Freter R, Sekera ER, Friedman AE, Robinson R, et al. Inflammatory response and barrier dysfunction by different e-cigarette flavoring chemicals identified by gas chromatography-mass spectrometry in e-liquids and e-vapors on human lung epithelial cells and fibroblasts. Appl In Vitro Toxicol. 2017;3(1):28–40. https://doi.org/10.1089/aivt.2016.0030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lerner CA, Sundar IK, Yao H, Gerloff J, Ossip DJ, McIntosh S, et al. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS One. 2015;10(2):e0116732. https://doi.org/10.1371/journal.pone.0116732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martin EM, Clapp PW, Rebuli ME, Pawlak EA, Glista-Baker E, Benowitz NL, et al. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am J Physiol Lung Cell Mol Physiol. 2016;311(1):L135–44. https://doi.org/10.1152/ajplung.00170.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Park HR, O'Sullivan M, Vallarino J, Shumyatcher M, Himes BE, Park JA, et al. Transcriptomic response of primary human airway epithelial cells to flavoring chemicals in electronic cigarettes. Sci Rep. 2019;9(1):1400. https://doi.org/10.1038/s41598-018-37913-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Crotty Alexander LE, Drummond CA, Hepokoski M, Mathew D, Moshensky A, Willeford A, et al. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am J Physiol Regul Integr Comp Physiol. 2018;314(6):R834–r47. https://doi.org/10.1152/ajpregu.00270.2017This study was the first to report systemic inflammation and fibrosis in mice exposed to e-cigarette aerosol.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fricker M, Gibson PG. Macrophage dysfunction in the pathogenesis and treatment of asthma. Eur Respir J. 2017;50(3):1700196. https://doi.org/10.1183/13993003.00196-2017.

    Article  CAS  PubMed  Google Scholar 

  60. Balhara J, Gounni AS. The alveolar macrophages in asthma: a double-edged sword. Mucosal Immunol. 2012;5(6):605–9. https://doi.org/10.1038/mi.2012.74.

    Article  CAS  PubMed  Google Scholar 

  61. Saradna A, Do DC, Kumar S, Fu QL, Gao P. Macrophage polarization and allergic asthma. Transl Res. 2018;191:1–14. https://doi.org/10.1016/j.trsl.2017.09.002.

    Article  CAS  PubMed  Google Scholar 

  62. Yang M, Kumar RK, Foster PS. Interferon-gamma and pulmonary macrophages contribute to the mechanisms underlying prolonged airway hyperresponsiveness. Clin Exp Allergy. 2010;40(1):163–73. https://doi.org/10.1111/j.1365-2222.2009.03393.x.

    Article  CAS  PubMed  Google Scholar 

  63. Ween MP, Whittall JJ, Hamon R, Reynolds PN, Hodge SJ. Phagocytosis and inflammation: exploring the effects of the components of E-cigarette vapor on macrophages. Physiol Rep. 2017;5(16):e13370. https://doi.org/10.14814/phy2.13370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Muthumalage T, Prinz M, Ansah KO, Gerloff J, Sundar IK, Rahman I. Inflammatory and oxidative responses induced by exposure to commonly used e-cigarette flavoring chemicals and flavored e-liquids without nicotine. Front Physiol. 2017;8:1130. https://doi.org/10.3389/fphys.2017.01130.

    Article  PubMed  Google Scholar 

  65. • Scott A, Lugg ST, Aldridge K, Lewis KE, Bowden A, Mahida RY, et al. Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. Thorax. 2018;73(12):1161–9. https://doi.org/10.1136/thoraxjnl-2018-211663In this study, alveolar macrophages exposed to e-liquid or condensate had increased reactive oxygen species production, increased inflammatory cytokine release, and impaired phagocytosis. Importantly, some of these effects were attenuated via treatment with N-acetyl-cysteine, suggesting oxidant imbalance as a mechanism for altered cellular function.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sussan TE, Gajghate S, Thimmulappa RK, Ma J, Kim JH, Sudini K, et al. Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PLoS One. 2015;10(2):e0116861. https://doi.org/10.1371/journal.pone.0116861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. • Clapp PW, Pawlak EA, Lackey JT, Keating JE, Reeber SL, Glish GL, et al. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am J Physiol Lung Cell Mol Physiol. 2017;313(2):L278–L92. https://doi.org/10.1152/ajplung.00452.2016The authors exposed human macrophages, neutrophils, and natural killer cells to flavored, nicotine-free e-liquids and found that those containing cinnamaldehyde had the greatest effects on cellular function.

    Article  PubMed  PubMed Central  Google Scholar 

  68. •• Ghosh A, Coakley RD, Ghio AJ, Muhlebach MS, Esther CR Jr, Alexis NE, et al. Chronic E-cigarette use increases neutrophil elastase and matrix metalloprotease levels in the lung. Am J Respir Crit Care Med. 2019. https://doi.org/10.1164/rccm.201903-0615OCBoth vapers and smokers had increased protease levels in bronchoalveolar lavage fluid, and nicotine dose-dependently stimulated release of proteases from isolated neutrophils and alveolar macrophages.

  69. •• Madison MC, Landers CT, Gu BH, Chang CY, Tung HY, You R, et al. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J Clin Invest. 2019;129(10):4290–304. https://doi.org/10.1172/jci128531This study demonstrated that chronic e-cigarette exposure in mice, with or without nicotine, can impact endogenous lung lipid homeostasis and impair response to viral infection.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Grunwell JR, Stephenson ST, Tirouvanziam R, Brown LAS, Brown MR, Fitzpatrick AM. Children with neutrophil-predominant severe asthma have Proinflammatory neutrophils with enhanced survival and impaired clearance. J Allergy Clin Immunol Pract. 2019;7(2):516–25.e6. https://doi.org/10.1016/j.jaip.2018.08.024.

    Article  PubMed  Google Scholar 

  71. Mosca T, Menezes MC, Silva AV, Stirbulov R, Forte WC. Chemotactic and phagocytic activity of blood neutrophils in allergic asthma. Immunol Investig. 2015;44(5):509–20. https://doi.org/10.3109/08820139.2015.1041606.

    Article  CAS  Google Scholar 

  72. Radermecker C, Louis R, Bureau F, Marichal T. Role of neutrophils in allergic asthma. Curr Opin Immunol. 2018;54:28–34. https://doi.org/10.1016/j.coi.2018.05.006.

    Article  CAS  PubMed  Google Scholar 

  73. Fahy JV. Eosinophilic and neutrophilic inflammation in asthma. Proc Am Thorac Soc. 2009;6(3):256–9. https://doi.org/10.1513/pats.200808-087RM.

    Article  CAS  PubMed  Google Scholar 

  74. Gao H, Ying S, Dai Y. Pathological roles of neutrophil-mediated inflammation in asthma and its potential for therapy as a target. J Immunol Res. 2017;2017:3743048. https://doi.org/10.1155/2017/3743048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wenzel SE, Balzar S, Cundall M, Chu HW. Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation, and wound repair. J Allergy Clin Immunol. 2003;111(6):1345–52. https://doi.org/10.1067/mai.2003.1464.

    Article  CAS  PubMed  Google Scholar 

  76. Cundall M, Sun Y, Miranda C, Trudeau JB, Barnes S, Wenzel SE. Neutrophil-derived matrix metalloproteinase-9 is increased in severe asthma and poorly inhibited by glucocorticoids. J Allergy Clin Immunol. 2003;112(6):1064–71. https://doi.org/10.1016/j.jaci.2003.08.013.

    Article  CAS  PubMed  Google Scholar 

  77. Hwang JH, Lyes M, Sladewski K, Enany S, McEachern E, Mathew DP, et al. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J Mol Med (Berl). 2016;94(6):667–79. https://doi.org/10.1007/s00109-016-1378-3.

    Article  CAS  Google Scholar 

  78. Edwards MR, Bartlett NW, Hussell T, Openshaw P, Johnston SL. The microbiology of asthma. Nat Rev Microbiol. 2012;10(7):459–71. https://doi.org/10.1038/nrmicro2801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Juhn YJ. Risks for infection in patients with asthma (or other atopic conditions): is asthma more than a chronic airway disease? J Allergy Clin Immunol. 2014;134(2):247–57; quiz 58–9. https://doi.org/10.1016/j.jaci.2014.04.024.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Noval Rivas M, Crother TR, Arditi M. The microbiome in asthma. Curr Opin Pediatr. 2016;28(6):764–71. https://doi.org/10.1097/mop.0000000000000419.

    Article  CAS  PubMed  Google Scholar 

  81. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578. https://doi.org/10.1371/journal.pone.0008578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McCauley K, Durack J, Valladares R, Fadrosh DW, Lin DL, Calatroni A, et al. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J Allergy Clin Immunol. 2019;144(5):1187–97. https://doi.org/10.1016/j.jaci.2019.05.035.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Loverdos K, Bellos G, Kokolatou L, Vasileiadis I, Giamarellos E, Pecchiari M, et al. Lung microbiome in asthma: current perspectives. J Clin Med. 2019;8(11). https://doi.org/10.3390/jcm8111967.

  84. Charlson ES, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R, et al. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One. 2010;5(12):e15216. https://doi.org/10.1371/journal.pone.0015216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pushalkar S, Paul B, Li Q, Yang J, Vasconcelos R, Makwana S, et al. Electronic cigarette aerosol modulates the Oral microbiome and increases risk of infection. iScience. 2020;23(3):100884. https://doi.org/10.1016/j.isci.2020.100884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. •• Miyashita L, Suri R, Dearing E, Mudway I, Dove RE, Neill DR, et al. E-cigarette vapour enhances pneumococcal adherence to airway epithelial cells. Eur Respir J. 2018;51(2). https://doi.org/10.1183/13993003.01592-2017This study demonstrated that e-cigarette aerosol can increase pneumococcal adherence to airway cells and that this was mediated through the platelet-activating factor receptor and oxidant imbalance.

  87. Spindel ER, McEvoy CT. The role of nicotine in the effects of maternal smoking during pregnancy on lung development and childhood respiratory disease. Implications for dangers of E-cigarettes. Am J Respir Crit Care Med. 2016;193(5):486–94. https://doi.org/10.1164/rccm.201510-2013PP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stop smoking in pregnancy: Your pregnancy and baby guide. https://www.nhs.uk/conditions/pregnancy-and-baby/smoking-pregnant/Accessed.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Jaspers.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Allergies and the Environment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickman, E., Jaspers, I. Current E-Cigarette Research in the Context of Asthma. Curr Allergy Asthma Rep 20, 62 (2020). https://doi.org/10.1007/s11882-020-00952-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-020-00952-2

Keywords

Navigation