Skip to main content

Advertisement

Log in

New Insights into Cockroach Allergens

  • Allergens (RK Bush and JA Woodfolk, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review addresses the most recent developments on cockroach allergen research in relation to allergic diseases, especially asthma.

Recent Findings

The number of allergens relevant to cockroach allergy has recently expanded considerably up to 12 groups. New X-ray crystal structures of allergens from groups 1, 2, and 5 revealed interesting features with implications for allergen standardization, sensitization, diagnosis, and therapy.

Summary

Cockroach allergy is strongly associated with asthma particularly among children and young adults living in inner-city environments, posing challenges for disease control. Environmental interventions targeted at reducing cockroach allergen exposure have provided conflicting results. Immunotherapy may be a way to modify the natural history of cockroach allergy and decrease symptoms and asthma severity among sensitized and exposed individuals. The new information on cockroach allergens is important for the assessment of allergen markers of exposure and disease, and for the design of immunotherapy trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of Importance •• Of Major Importance

  1. Bernton HS, Brown H. Insect allergy--preliminary studies of the cockroach. J Allergy Clin Immunol. 1964;35:506–13.

    CAS  Google Scholar 

  2. Kang B, Vellody D, Homburger H, Yunginger JW. Cockroach cause of allergic asthma. Its specificity and immunologic profile. J Allergy Clin Immunol. 1979;63:80–6.

    Article  CAS  PubMed  Google Scholar 

  3. Cornwell PB. The cockroach. London: Hutchinson; 1968.

    Google Scholar 

  4. Pomés A. Cockroach and other inhalant insect allergens. Clin Allergy Immunol. 2008;21:183–200.

  5. Pomés A, Arruda LK. Investigating cockroach allergens: aiming to improve diagnosis and treatment of cockroach allergic patients. Methods. 2014;66:75–85.

    Article  PubMed  CAS  Google Scholar 

  6. Do DC, Zhao Y, Gao P. Cockroach allergen exposure and risk of asthma. Allergy. 2016;71:463–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lombardi C, Savi E, Ridolo E, Passalacqua G, Canonica GW. Is allergic sensitization relevant in severe asthma? Which allergens may be culprit? World Allergy Organ J. 2017;10:2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. •• Pongracic JA, Krouse RZ, Babineau DC, Zoratti EM, Cohen RT, Wood RA, et al. Distinguishing characteristics of difficult-to-control asthma in inner-city children and adolescents. J Allergy Clin Immunol. 2016;138(4):1030–41. A large population of inner-city children with asthma, 6 to 17 years old, was followed prospectively while receiving guidelines-based management for asthma and rhinitis. FEV1 bronchodilator responsiveness, severity of rhinitis and markers of atopy, particularly total serum IgE levels, mold sensitization, and the total number of allergen sensitizations, were significant factors which distinguished difficult-to control from easy-to-control asthma. The study highlights the importance of phenotyping inner-city children with asthma for identifying those who require high-dose asthma controller therapy

    Article  PubMed  Google Scholar 

  9. Milligan KL, Matsui E, Sharma H. Asthma in urban children: epidemiology, environmental risk factors, and the public health domain. Curr Allergy Asthma Rep. 2016;16:33.

    Article  PubMed  CAS  Google Scholar 

  10. Gergen PJ, Togias A. Inner city asthma. Immunol Allergy Clin N Am. 2015;35:101–14.

    Article  Google Scholar 

  11. •• Zoratti EM, Krouse RZ, Babineau DC, Pongracic JA, GT O’C, Wood RA, et al. Asthma phenotypes in inner-city children. J Allergy Clin Immunol. 2016;138(4):1016–29. Cluster analysis using baseline and longitudinal variables was performed in 616 inner-city children with asthma followed prospectively for a year. Five clusters were identified by indicators of asthma and rhinitis severity, pulmonary physiology, allergy (sensitization and total serum IgE), and allergic inflammation. It was shown that allergy distinguished asthma phenotypes in urban children. Severe asthma often coclustered with highly allergic children. However, a symptomatic phenotype with little allergy or allergic inflammation was also identified

    Article  PubMed  Google Scholar 

  12. Rosenstreich DL, et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med. 1997;336:1356–63.

    Article  CAS  PubMed  Google Scholar 

  13. Sheehan WJ, Phipatanakul W. Indoor allergen exposure and asthma outcomes. Curr Opin Pediatr. 2016;28:772–7.

    Article  CAS  PubMed  Google Scholar 

  14. Phipatanakul W, Eggleston PA, Wright EC, Wood RA. Mouse allergen. I. The prevalence of mouse allergen in inner-city homes. The National Cooperative Inner-City Asthma Study. J Allergy Clin Immunol. 2000;106:1070–4.

    Article  CAS  PubMed  Google Scholar 

  15. Grant T et al. Mouse sensitization and exposure are associated with asthma severity in urban children. J Allergy Clin Immunol Pract. 2016. doi:10.1016/j.jaip.2016.10.020.

  16. Ahluwalia SK, et al. Mouse allergen is the major allergen of public health relevance in Baltimore City. J Allergy Clin Immunol. 2013;132:830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sheehan WJ, Phipatanakul W. Difficult-to-control asthma: epidemiology and its link with environmental factors. Curr Opin Allergy Clin Immunol. 2015;15:397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. •• Liu AH, Babineau DC, Krouse RZ, Zoratti EM, Pongracic JA, GT O’C, et al. Pathways through which asthma risk factors contribute to asthma severity in inner-city children. J Allergy Clin Immunol. 2016;138(4):1042–50. Based on medical evidence in the published literature, the authors developed a conceptual model to describe how 8 risk-factor domains are linked to asthma severity. Among the domains, allergen sensitization (linked sequentially to allergic inflammation, pulmonary physiology and rhinitis severity), and environmental tobacco smoke exposure had the largest effects on asthma severity, whereas vitamin D, stress and obesity showed no significant association. The model supported the concept that multiple pathways contribute significantly to asthma severity. However, allergen sensitization appears to be the originating domain in the pathophysiologic chain

    Article  PubMed  Google Scholar 

  19. Gergen PJ, Teach SJ, Togias A, Busse WW. Reducing exacerbations in the inner city: lessons from the Inner-City Asthma Consortium (ICAC). J Allergy Clin Immunol Pract. 2016;4:22–6.

    Article  PubMed  Google Scholar 

  20. Morgan WJ, et al. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med. 2004;351:1068–80.

    Article  CAS  PubMed  Google Scholar 

  21. Rullo VE, Rizzo MC, Arruda LK, Sole D, Naspitz CK. Daycare centers and schools as sources of exposure to mites, cockroach, and endotoxin in the city of Sao Paulo. Brazil J Allergy Clin Immunol. 2002;110:582–8.

    Article  PubMed  Google Scholar 

  22. Portnoy J, et al. Environmental assessment and exposure reduction of cockroaches: a practice parameter. J Allergy Clin Immunol. 2013;132:802–8.

    Article  PubMed  Google Scholar 

  23. Mueller GA, et al. The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment. J Allergy Clin Immunol. 2013;132:1420–6.

    Article  CAS  PubMed  Google Scholar 

  24. Arruda LK, et al. Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2. Sequence homology to the aspartic proteases. J Biol Chem. 1995;270:19563–8.

    Article  CAS  PubMed  Google Scholar 

  25. Sporik R, et al. Mite, cat, and cockroach exposure, allergen sensitisation, and asthma in children: a case-control study of three schools. Thorax. 1999;54:675–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. • DiMango E, Serebrisky D, Narula S, Shim C, Keating C, Sheares B, et al. Individualized household allergen intervention lowers allergen level but not asthma medication use: a randomized controlled trial. J Allergy Clin Immunol Pract. 2016;4(4):671–9. Individually targeted environmental intervention leading to decrease of indoor allergen levels has not allowed for decrease necessity of asthma medications in adults and children, compared with usual care, in patients already receiving optimal controller therapy

    Article  PubMed  Google Scholar 

  27. • Rabito FA, Carlson JC, He H, Werthmann D, Schal C. A single intervention for cockroach control reduces cockroach exposure and asthma morbidity in children. J Allergy Clin Immunol. 2017. doi:10.1016/j.jaci.2016.10.019. A 12-month randomized trial of a single intervention, consisting of placement of insecticidal bait, resulted in sustained cockroach elimination and was associated with improved asthma outcomes in a group of 102 children aged 5 to 17 years with moderate to severe asthma living in New Orleans. This single intervention could be an alternative to multifaceted interventions currently recommended to improve asthma morbidity.

  28. • Wisniewski JA, McLaughlin AP, Stenger PJ, Patrie J, Brown MA, El-Dahr JM, et al. A comparison of seasonal trends in asthma exacerbations among children from geographic regions with different climates. Allergy Asthma Proc. 2016;37(6):475–81. An interesting analysis showing that seasonal peaks for asthma exacerbations varied among children who lived in geographic locations with different climates in the United States, and were not restricted to the beginning of the school year

    Article  PubMed  PubMed Central  Google Scholar 

  29. Busse WW, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011;364:1005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. • Teach SJ, Gill MA, Togias A, Sorkness CA, Arbes Jr SJ, Calatroni A, et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol. 2015;136(6):1476–85. A double-blind, double placebo-controlled, multicenter clinical trial conducted among over 400 inner-city asthmatic children aged 6 to 17 years with 1 or more recent exacerbations. Anti-IgE therapy with omalizumab before return to school, added to ongoing guidelines-based care, among inner-city youth reduced fall asthma exacerbations, particularly among those with a recent exacerbation

  31. •• Kantor DB, Stenquist N, McDonald MC, Schultz BJ, Hauptman M, Smallwood CD, et al. Rhinovirus and serum IgE are associated with acute asthma exacerbation severity in children. J Allergy Clin Immunol. 2016;138(5):1467–71. Relevant study showing interactions of rhinovirus infection, IgE sensitization and severity of asthma exacerbations

    Article  CAS  PubMed  Google Scholar 

  32. • Kantor DB, McDonald MC, Stenquist N, Schultz BJ, Smallwood CD, Nelson KA. Omalizumab is associated with reduced acute severity of rhinovirus-triggered asthma exacerbation. Am J Respir Crit Care Med. 2016;194(12):1552–5. Decreasing IgE response with omalizumab reduced severity of rhinovirus-triggered asthma exacerbation, providing a proof-of-concept of the relevance of this association

    Article  PubMed  Google Scholar 

  33. Soto-Quiros M, et al. High titers of IgE antibody to dust mite allergen and risk for wheezing among asthmatic children infected with rhinovirus. J Allergy Clin Immunol. 2012;129:1499–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Litonjua AA, Carey VJ, Burge HA, Weiss ST, Gold DR. Exposure to cockroach allergen in the home is associated with incident doctor-diagnosed asthma and recurrent wheezing. J Allergy Clin Immunol. 2001;107:41–7.

    Article  CAS  PubMed  Google Scholar 

  35. Silva JM, et al. A prospective study of wheezing in young children: the independent effects of cockroach exposure, breast-feeding and allergic sensitization. Pediatr Allergy Immunol. 2005;16:393–401.

    Article  PubMed  Google Scholar 

  36. Perzanowski MS, et al. Early-life cockroach allergen and polycyclic aromatic hydrocarbon exposures predict cockroach sensitization among inner-city children. J Allergy Clin Immunol. 2013;131:886–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. •• Jung KH, Lovinsky-Desir S, Perzanowski M, Liu X, Maher C, Gil E, et al. Repeatedly high polycyclic aromatic hydrocarbon exposure and cockroach sensitization among inner-city children. Environ Res. 2015;140:649–56. An interesting study uncovering association of inner-city pollution to development of cockroach sensitization

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lynch SV, et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol. 2014;134:593–601.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee MF, Song PP, Hwang GY, Lin SJ, Chen YH. Sensitization to Per a 2 of the American cockroach correlates with more clinical severity among airway allergic patients in Taiwan. Ann Allergy Asthma Immunol. 2012;108:243–8.

  40. Satinover SM, et al. Specific IgE and IgG antibody-binding patterns to recombinant cockroach allergens. J Allergy Clin Immunol. 2005;115:803–9.

    Article  CAS  PubMed  Google Scholar 

  41. Gao P, et al. CD14, a key candidate gene associated with a specific immune response to cockroach. Clin Exp Allergy. 2010;40:1353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kouzaki H, Tojima I, Kita H, Shimizu T. Transcription of interleukin-25 and extracellular release of the protein is regulated by allergen proteases in airway epithelial cells. Am J Respir Cell Mol Biol. 2013;49:741–50.

    Article  CAS  PubMed  Google Scholar 

  43. Kouzaki H, Iijima K, Kobayashi T, O’Grady SM, Kita H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol. 2011;186:4375–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gandhi VD, Vliagoftis H. Airway epithelium interactions with aeroallergens: role of secreted cytokines and chemokines in innate immunity. Front Immunol. 2015;6:147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hong JH, et al. German cockroach extract activates protease-activated receptor 2 in human airway epithelial cells. J Allergy Clin Immunol. 2004;113:315–9.

    Article  CAS  PubMed  Google Scholar 

  46. Page K, Hughes VS, Odoms KK, Dunsmore KE, Hershenson MB. German cockroach proteases regulate interleukin-8 expression via nuclear factor for interleukin-6 in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2005;32:225–31.

    Article  CAS  PubMed  Google Scholar 

  47. Page K, et al. TLR2-mediated activation of neutrophils in response to German cockroach frass. J Immunol. 2008;180:6317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu T, et al. Aryl hydrocarbon receptor protects lungs from cockroach allergen-induced inflammation by modulating mesenchymal stem cells. J Immunol. 2015;195:5539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patel PS, King RG, Kearney JF. Pulmonary alpha-1,3-Glucan-specific IgA-secreting B cells suppress the development of cockroach allergy. J Immunol. 2016;197:3175–87.

    Article  CAS  PubMed  Google Scholar 

  50. Patterson ML, Slater JE. Characterization and comparison of commercially available German and American cockroach allergen extracts. Clin Exp Allergy. 2002;32:721–7.

    Article  CAS  PubMed  Google Scholar 

  51. Tsai YM, et al. Functional interaction of cockroach allergens and mannose receptor (CD206) in human circulating fibrocytes. PLoS One. 2013;8:e64105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu L, et al. Cockroach allergen Bla g 7 promotes TIM4 expression in dendritic cells leading to Th2 polarization. Mediat Inflamm. 2013;2013:983149.

    Google Scholar 

  53. Zhang Z, et al. Induction of T-helper type 2 cytokine release and up-regulated expression of protease-activated receptors on mast cells by recombinant American cockroach allergen Per a 7. Clin Exp Allergy. 2008;38:1160–7.

  54. Yang H, et al. Cockroach allergen Per a 7 down-regulates expression of toll-like receptor 9 and IL-12 release from P815 cells through PI3K and MAPK signaling pathways. Cell Physiol Biochem. 2012;29:561–70.

  55. Gore JC, Schal C. Gene expression and tissue distribution of the major human allergen Bla g 1 in the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae). J Med Entomol. 2004;41:953–60.

    Article  CAS  PubMed  Google Scholar 

  56. Lee MF, Chen YH, Chiang CH, Lin SJ, Song PP. Analysis of 10 environmental allergen components of the American cockroach in Taiwan. Ann Allergy Asthma Immunol. 2016;117:535–41.

    Article  CAS  PubMed  Google Scholar 

  57. Tamaki FK, et al. Physiology of digestion and the molecular characterization of the major digestive enzymes from Periplaneta americana. J Insect Physiol. 2014;70:22–35.

    Article  CAS  PubMed  Google Scholar 

  58. Fan Y, et al. Tissue localization and regulation by juvenile hormone of human allergen Bla g 4 from the German cockroach, Blattella germanica (L.). Insect Mol Biol. 2005;14:45–53.

    Article  CAS  PubMed  Google Scholar 

  59. Arruda LK, et al. Recombinant allergens for diagnosis of cockroach allergy. Curr Allergy Asthma Rep. 2014;14:428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Khantisitthiporn O, et al. Native troponin-T of the American cockroach (CR), Periplaneta americana, binds to IgE in sera of CR allergic Thais. Asian Pac J Allergy Immunol. 2007;25:189–97.

    CAS  PubMed  Google Scholar 

  61. Jeong KY, Son M, Lee JH, Hong CS, Park JW. Allergenic characterization of a novel allergen, homologous to chymotrypsin, from German cockroach. Allergy Asthma Immunol Res. 2015;7:283–9.

    Article  PubMed  Google Scholar 

  62. Chuang JG, Su SN, Chiang BL, Lee HJ, Chow LP. Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics. 2010;10:3854–67.

    Article  CAS  PubMed  Google Scholar 

  63. Jeong KY, et al. Identification of novel allergenic components from German cockroach fecal extract by a proteomic approach. Int Arch Allergy Immunol. 2013;161:315–24.

    Article  CAS  PubMed  Google Scholar 

  64. Helm R, et al. Isolation and characterization of a clone encoding a major allergen (Bla g Bd90K) involved in IgE-mediated cockroach hypersensitivity. J Allergy Clin Immunol. 1996;98:172–80.

    Article  CAS  PubMed  Google Scholar 

  65. Pomés A, et al. Novel allergen structures with tandem amino acid repeats derived from German and American cockroach. J Biol Chem. 1998;273:30801–7.

    Article  PubMed  Google Scholar 

  66. Fischer HM, Wheat CW, Heckel DG, Vogel H. Evolutionary origins of a novel host plant detoxification gene in butterflies. Mol Biol Evol. 2008;25:809–20.

    Article  CAS  PubMed  Google Scholar 

  67. Randall TA, Perera L, London RE, Mueller GA. Genomic, RNAseq, and molecular modeling evidence suggests that the major allergen domain in insects evolved from a homodimeric origin. Genome Biol Evol. 2013;5:2344–58.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pomés A, Vailes LD, Helm RM, Chapman MD. IgE reactivity of tandem repeats derived from cockroach allergen, Bla g 1. Eur J Biochem. 2002;269:3086–92.

    Article  PubMed  CAS  Google Scholar 

  69. •• Mueller GA, et al. Analysis of glutathione S-transferase allergen cross-reactivity in a North American population: relevance for molecular diagnosis. J Allergy Clin Immunol. 2015;136:1369–77. A comparative analysis of the X-ray crystal structures of the glutathione S-transferase Bla g 5 and the homolog allergens from mite (Der p 8 and Blo t 8) and Ascaris (Asp s 13), revealed the structural basis for a lack of significant cross-reactivity among these allergens in a North American population, which has implications for their use in allergy diagnosis

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Melén E, Pomés A, Vailes LD, Arruda LK, Chapman MD. Molecular cloning of Per a 1 and definition of the cross-reactive group 1 cockroach allergens. J Allergy Clin Immunol. 1999;103:859–64.

  71. Wu CH, Wang NM, Lee MF, Kao CY, Luo SF. Cloning of the American cockroach Cr-PII allergens: evidence for the existence of cross-reactive allergens between species. J Allergy Clin Immunol. 1998;101:832–40.

    Article  CAS  PubMed  Google Scholar 

  72. Yang CY, Wu JD, Wu CH. Sequence analysis of the first complete cDNA clone encoding an American cockroach Per a 1 allergen. Biochim Biophys Acta. 2000;1517:153–8.

  73. Mueller GA, et al. Characterization of an anti-Bla g 1 scFv: epitope mapping and cross-reactivity. Mol Immunol. 2014;59:200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Suazo A, Gore C, Schal C. RNA interference-mediated knock-down of Bla g 1 in the German cockroach, Blattella germanica L., implicates this allergen-encoding gene in digestion and nutrient absorption. Insect Mol Biol. 2009;18:727–36.

    Article  CAS  PubMed  Google Scholar 

  75. Nolan T, et al. Analysis of two novel midgut-specific promoters driving transgene expression in Anopheles stephensi mosquitoes. PLoS One. 2011;6:e16471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shao L, Devenport M, Fujioka H, Ghosh A, Jacobs-Lorena M. Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, Aedes aegypti. Insect Biochem Mol Biol. 2005;35:947–59.

    Article  CAS  PubMed  Google Scholar 

  77. Colpitts TM, et al. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog. 2011;7:e1002189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Juneja P, et al. Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response. PLoS Pathog. 2015;11:e1004765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Karp CL. Guilt by intimate association: what makes an allergen an allergen? J Allergy Clin Immunol. 2010;125:955–60.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Huang S, et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res. 2012;53:2002–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gustchina A, et al. Crystal structure of cockroach allergen Bla g 2, an unusual zinc binding aspartic protease with a novel mode of self-inhibition. J Mol Biol. 2005;348:433–44.

    Article  CAS  PubMed  Google Scholar 

  82. Wünschmann S, Gustchina A, Chapman MD, Pomés A. Cockroach allergen Bla g 2: an unusual aspartic proteinase. J Allergy Clin Immunol. 2005;116:140–5.

    Article  PubMed  CAS  Google Scholar 

  83. Lee MF, et al. IgE-binding epitope mapping and tissue localization of the major American cockroach allergen Per a 2. Allergy Asthma Immunol Res. 2015;7:376–83.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li M, et al. Crystal structure of a dimerized cockroach allergen Bla g 2 complexed with a monoclonal antibody. J Biol Chem. 2008;283:22806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li M, et al. Carbohydrates contribute to the interactions between cockroach allergen Bla g 2 and a monoclonal antibody. J Immunol. 2011;186:333–40.

    Article  CAS  PubMed  Google Scholar 

  86. Glesner J, et al. Mechanisms of allergen-antibody interaction of cockroach allergen Bla g 2 with monoclonal antibodies that inhibit IgE antibody binding. PLoS One. 2011;6:e22223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. •• Woodfolk JA, et al. Antigenic determinants of the bilobal cockroach allergen Bla g 2. J Biol Chem. 2016;291:2288–301. This study generated a Bla g 2 triple mutant with reduced capacity to bind IgE (while preserving the fold of the native allergen) and with T cell modulatory properties, which could potentially be used for immunotherapy

    Article  CAS  PubMed  Google Scholar 

  88. Wu CH, Lee MF, Liao SC, Luo SF. Sequencing analysis of cDNA clones encoding the American cockroach Cr-PI allergens. Homology with insect hemolymph proteins. J Biol Chem. 1996;271:17937–43.

    Article  CAS  PubMed  Google Scholar 

  89. Mindykowski B, et al. Cockroach allergens Per a 3 are oligomers. Dev Comp Immunol. 2010;34:722–33.

    Article  CAS  PubMed  Google Scholar 

  90. Wu CH, Lee MF, Wang NM, Luo SF. Sequencing and immunochemical characterization of the American cockroach Per a 3 (Cr-PI) isoallergenic variants. Mol Immunol. 1997;34:1–8.

  91. Khurana T, Collison M, Chew FT, Slater JE. Bla g 3: a novel allergen of German cockroach identified using cockroach-specific avian single-chain variable fragment antibody. Ann Allergy Asthma Immunol. 2014;112:140–5.

    Article  CAS  PubMed  Google Scholar 

  92. Tan YW, et al. Structures of two major allergens, Bla g 4 and Per a 4, from cockroaches and their IgE binding epitopes. J Biol Chem. 2009;284:3148–57.

  93. Arruda LK, Vailes LD, Hayden ML, Benjamin DC, Chapman MD. Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J Biol Chem. 1995;270:31196–201.

    Article  CAS  PubMed  Google Scholar 

  94. Offermann LR, et al. The major cockroach allergen Bla g 4 binds tyramine and octopamine. Mol Immunol. 2014;60:86–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arruda LK, Vailes LD, Platts-Mills TA, Hayden ML, Chapman MD. Induction of IgE antibody responses by glutathione S-transferase from the German cockroach (Blattella germanica). J Biol Chem. 1997;272:20907–12.

    Article  CAS  PubMed  Google Scholar 

  96. Hindley J, et al. Bla g 6: a troponin C allergen from Blattella germanica with IgE binding calcium dependence. J Allergy Clin Immunol. 2006;117:1389–95.

    Article  CAS  PubMed  Google Scholar 

  97. Jeong KY, et al. Allergenicity of recombinant Bla g 7, German cockroach tropomyosin. Allergy. 2003;58:1059–63.

    Article  CAS  PubMed  Google Scholar 

  98. Asturias JA, et al. Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J Immunol. 1999;162:4342–8.

    CAS  PubMed  Google Scholar 

  99. Santos AB, et al. Cockroach allergens and asthma in Brazil: identification of tropomyosin as a major allergen with potential cross-reactivity with mite and shrimp allergens. J Allergy Clin Immunol. 1999;104:329–37.

    Article  CAS  PubMed  Google Scholar 

  100. Ayuso R, Reese G, Leong-Kee S, Plante M, Lehrer SB. Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol. 2002;129:38–48.

    Article  CAS  PubMed  Google Scholar 

  101. Sookrung N, et al. Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ Health Perspect. 2006;114:875–80.

  102. Yu CJ, Lin YF, Chiang BL, Chow LP. Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol. 2003;170:445–53.

  103. Binder M, et al. Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate pan-allergen. J Immunol. 2001;167:5470–7.

    Article  CAS  PubMed  Google Scholar 

  104. Pascal M, et al. Molecular diagnosis of shrimp allergy: efficiency of several allergens to predict clinical reactivity. J Allergy Clin Immunol Pract. 2015;3:521–9.

    Article  PubMed  Google Scholar 

  105. Meechan P, et al. Intranasal, liposome-adjuvanted cockroach allergy vaccines made of refined major allergen and whole-body extract of Periplaneta americana. Int Arch Allergy Immunol. 2013;161:351–62.

    Article  CAS  PubMed  Google Scholar 

  106. • Dillon MB, et al. Different Bla-g T cell antigens dominate responses in asthma versus rhinitis subjects. Clin Exp Allergy. 2015;45:1856–67. An analysis of German cockroach antigens involved in T cell responses revealed differences in Bla-g T cell antigens dominating responses in asthma (Bla g 5, Bla g 9 and Bla g 11) versus rhinitis subjects (Bla g 5, Bla g 4). Bla g 2, which is a dominant target of IgE response, accounted for a minor fraction of T cell reactivity

  107. Sudha VT, Arora N, Gaur SN, Pasha S, Singh BP. Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy. 2008;63:768–76.

  108. Goel C, Kalra N, Dwarakanath BS, Gaur SN, Arora N. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway. Clin Exp Immunol. 2015;180:341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goel C, Gaur SN, Bhati G, Arora N. DC type 2 polarization depends on both the allergic status of the individual and protease activity of Per a 10. Immunobiology. 2015;220:1113–21.

  110. Kale SL, Arora N. Per a 10 activates human derived epithelial cell line in a protease dependent manner via PAR-2. Immunobiology. 2015;220:525–32.

    Article  CAS  PubMed  Google Scholar 

  111. Fang Y, et al. Two new types of allergens from the cockroach, Periplaneta americana. Allergy. 2015;70:1674–8.

    Article  CAS  PubMed  Google Scholar 

  112. Powning RF, Irzykiewicz H. A chitinase from the gut of the cockroach Periplaneta americana. Nature. 1963;200:1128.

  113. Slater JE, et al. Biological potency of German cockroach allergen extracts determined in an inner city population. Clin Exp Allergy. 2007;37:1033–9.

    Article  CAS  PubMed  Google Scholar 

  114. Khurana T, Dobrovolskaia E, Shartouny JR, Slater JE. Multiplex assay for protein profiling and potency measurement of German cockroach allergen extracts. PLoS One. 2015;10:e0140225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Barbosa MC, et al. Efficacy of recombinant allergens for diagnosis of cockroach allergy in patients with asthma and/or rhinitis. Int Arch Allergy Immunol. 2013;161:213–9.

    Article  CAS  PubMed  Google Scholar 

  116. Santos AB, et al. Cross-reactive IgE antibody responses to tropomyosins from Ascaris lumbricoides and cockroach. J Allergy Clin Immunol. 2008;121:1040–6.

    Article  CAS  PubMed  Google Scholar 

  117. Bassirpour G, Zoratti E. Cockroach allergy and allergen-specific immunotherapy in asthma: potential and pitfalls. Curr Opin Allergy Clin Immunol. 2014;14:535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kang BC, Johnson J, Morgan C, Chang JL. The role of immunotherapy in cockroach asthma. J Asthma. 1988;25:205–18.

    Article  CAS  PubMed  Google Scholar 

  119. Alonso A, et al. Immunological changes during cockroach immunotherapy. J Investig Allergol Clin Immunol. 1999;9:299–304.

    CAS  PubMed  Google Scholar 

  120. Srivastava D, Gaur SN, Arora N, Singh BP. Clinico-immunological changes post-immunotherapy with Periplaneta americana. Eur J Clin Investig. 2011;41:879–88.

    Article  CAS  Google Scholar 

  121. •• Wood RA, Togias A, Wildfire J, Visness CM, Matsui EC, Gruchalla R, et al. Development of cockroach immunotherapy by the Inner-City asthma Consortium. J Allergy Clin Immunol. 2014;133(3):846–52. A detailed description of the ICAC first stage studies of developing immunotherapy for cockroach allergy. Analysis of safety and of immunological biomarkers of three pilot studies of sublingual immunotherapy (SLIT) and one of subcutaneous immunotherapy (SCIT) with German cockroach extract are reported, which revealed that SCIT resulted in more vigorous and consistent immunological responses while using the same extract, as compared to SLIT

    Article  PubMed  Google Scholar 

  122. Larenas-Linnemann D. Allergen immunotherapy: an update on protocols of administration. Curr Opin Allergy Clin Immunol. 2015;15:556–67.

    Article  CAS  PubMed  Google Scholar 

  123. Passalacqua G, Canonica GW, Bagnasco D. Benefit of SLIT and SCIT for allergic rhinitis and asthma. Curr Allergy Asthma Rep. 2016;16:88.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Part of the research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI077653 (PI: AP and MDC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Research carried out in Brazil by LKA has been supported by São Paulo State Research Funding Agency (FAPESP) and Brazilian National Research Council – National Institutes of Science and Technology, Institute of Investigation in Immunology (CNPq–INCT–iii). This study was supported in part by the Intramural Research Program of the National Institute of Environmental Health Sciences (Z01- ES102906-01, GAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pomés.

Ethics declarations

Conflict of Interest

Drs. Chapman and Pomés declare a grant from NIAID/NIH and are employed by Indoor Biotechnologies. Dr. Arruda reports grants from São Paulo State Research Funding Agency (FAPESP), grants from Brazilian National Research Council – National Institutes of Science and Technology and Institute of Investigation in Immunology (CNPq–INCT–iii). In addition, Drs. Arruda and Chapman have a United States Patent, number 5,869,288. February 1999 issued. Drs. Randall and Mueller declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Allergens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomés, A., Mueller, G.A., Randall, T.A. et al. New Insights into Cockroach Allergens. Curr Allergy Asthma Rep 17, 25 (2017). https://doi.org/10.1007/s11882-017-0694-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-017-0694-1

Keywords

Navigation