Skip to main content
Log in

Ozone variability, its formation potential and crops losses in the himalayan foothills

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Surface ozone observations in Doon Valley (Dehradun: 30.3oN, 78.0oE, 700 m), which acts as a bridge between the Himalayas and the Indo-Gangetic Plain, showed daytime higher values, suggesting a typical urban behaviour in proximity of the Himalayas. Ozone exhibited a maximum in spring (49.2 ± 24.8 ppbv in May) with an hourly average of more than 110 ppbv, followed by a secondary maximum in autumn and the lowest level occurring in the summer-monsoon (~ 13 ppbv in July-August). Ozone levels exceeded the 8-hour National Air Quality Standard limit (50 ppbv) throughout the year, except in July-September. The observed spring maximum was found to be triggered by biomass burning, leading to 9–50% enhancement in ozone during the high-fire activity period (April-May). Using a box model, in-situ photochemical ozone production and loss were estimated at ~ 41 ppbv and ~ 8 ppbv, respectively. The model highlighted the dominant role of the HO2 + NO reaction (85.6%) in ozone production and the O3 + HO2 reaction (56.2%) in ozone loss. Exposure metrics analysis (M7 and AOT40) estimated an annual loss of 27–37 kilotons of wheat and 14–32 kilotons of rice production due to elevated ozone levels. Furthermore, hazard ratios for non-methane hydrocarbons and lifetime cancer risk values for benzene and ethylbenzene exceeded the standard limits (USEPA and WHO), indicating significant health risks to the population. Model and satellite-based studies demonstrated the NOx-sensitive behaviour of ozone production in this Himalayan region, where aromatics exhibited the maximum ozone formation potential among different NMHCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All observational data used in this analysis could be obtained by writing to the corresponding author.

Disclaimer The authors declare that they have no conflict of interest.

References

  • Adams R M, Glyer J D, Johnson S L et al (1989). A reassessment of the economic effects of ozone on US agriculture. Japca 39(7):960–968

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2011) https://wwwn.cdc.gov/TSP/substances/SubstanceAZ.aspx.

  • Avnery S, Mauzerall DL, Liu J et al (2011) Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45(13):2297–2309

    Article  CAS  Google Scholar 

  • Bhardwaj P, Naja M, Kumar R et al (2016) Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Environ Sci Pollut Res 23:4397–4410

    Article  CAS  Google Scholar 

  • Bhardwaj P, Naja M, Rupakheti M et al (2018) Variations in surface ozone and carbon monoxide in the Kathmandu Valley and surrounding broader regions during SusKat-ABC field campaign: role of local and regional sources. Atmos Chem Phys 18(16):11949–11971

    Article  CAS  Google Scholar 

  • Bucsela EJ, Perring AE, Cohen RC et al (2008) Comparison of tropospheric NO2 from in situ aircraft measurements with near-real‐time and standard product data from OMI. J Geophys Res Atmos 113:D16

    Article  Google Scholar 

  • Campana M, Li Y, Staehelin J, Prevot ASH, Bonasoni P, Loetscher H, Peter T (2005) The influence of south foehn on the ozone mixing ratios at the high alpine site Arosa. Atmos Environ 39:2945–2955. https://doi.org/10.1016/j.atmosenv.2005.01.037

    Article  CAS  Google Scholar 

  • Carter WP (2010) Development of the SAPRC-07 chemical mechanism. Atmos Environ 44(40):5324–5335

    Article  CAS  Google Scholar 

  • Chen Y, Beig G, Archer-Nicholls S et al (2021) Avoiding high ozone pollution in Delhi, India. Faraday Discuss 226:502–514

    Article  CAS  Google Scholar 

  • Crutzen PJ, Lawrence MG, Pöschl U (1999) On the background photochemistry of tropospheric ozone. Tellus B: Chem Phy Meteorol 51(1):123–146

    Article  Google Scholar 

  • David LM, Nair PR (2011) Diurnal and seasonal variability of surface ozone and NOx at a tropical coastal site: Association with mesoscale and synoptic meteorological conditions. J Geophys Res Atmos 116:D10

    Article  Google Scholar 

  • Draxler RR, Hess GD (1997) Description of the HYSPLIT4 modeling system

  • Duncan BN, Yoshida Y, Olson JR et al (2010) Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmos Environ 44(18):2213–2223

    Article  CAS  Google Scholar 

  • Flemming J, Benedetti A, Inness A et al (2017) The CAMS interim reanalysis of carbon monoxide, ozone and aerosol for 2003–2015. Atmos Chem Phys 17(3):1945–1983

    Article  CAS  Google Scholar 

  • Ghude SD, Jain SL, Arya BC et al (2008) Ozone in ambient air at a tropical megacity, Delhi: characteristics, trends and cumulative ozone exposure indices. J Atmos Chem 60:237–252

    Article  CAS  Google Scholar 

  • Ghude SD, Jena C, Chate DM et al (2014) Reductions in India’s crop yield due to ozone. Geophy Res Lett 41(15):5685–5691

    Article  Google Scholar 

  • Ghude SD, Chate DM, Jena C et al (2016) Premature mortality in India due to PM2. 5 and ozone exposure. Geophys Res Lett 43(9):4650–4658

    Article  CAS  Google Scholar 

  • Gilge S, Plass-Duelmer C, Fricke W, Kaiser A, Ries L, Buchmann B, Steinbacher M (2010) Ozone, carbon monoxide and nitrogen oxides time series at four alpine GAW mountain stations in central Europe. Atmos Chem Phys 10:12295–12316. https://doi.org/10.5194/acp-10-12295-2010

    Article  CAS  Google Scholar 

  • Gratz LE, Jaffe DA, Hee JR (2015) Causes of increasing ozone and decreasing carbon monoxide in springtime at the Mt. Bachelor Observatory from 2004 to 2013. Atmos Environ 109:323–330. https://doi.org/10.1016/j.atmosenv.2014.05.076

    Article  CAS  Google Scholar 

  • Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Article  Google Scholar 

  • Holton JR, Haynes PH, McIntyre ME et al (1995) Stratosphere-Troposphere exchange. Rev Geophys 33(4):403–439. https://doi.org/10.1029/95RG02097

    Article  Google Scholar 

  • Hov Ø, Isaksen IS, Hesstvedt E (1978) Diurnal variations of ozone and other pollutants in an urban area. Atmos Environ (1967) 12(12): 2469–2479

  • Inness A, Ades M, Agustí-Panareda A et al (2019) The CAMS reanalysis of atmospheric composition. Atmos Chem Phys 19(6):3515–3556

    Article  CAS  Google Scholar 

  • IRIS (Integrated Risk Information System) (2011) https://iris.epa.gov/AtoZ/?list_type=alpha

  • Kant Y, Shaik DS, Mitra D et al (2020) Black carbon aerosol quantification over north-west himalayas: Seasonal heterogeneity, source apportionment and radiative forcing. Environ Pollut 257:113446

    Article  CAS  Google Scholar 

  • Kheirbek I, Wheeler K, Walters S, Kass D, Matte T (2013) PM2.5 and ozone health impacts and disparities in New York City: sensitivity to spatial and temporal resolution. Air Qual Atmos Health 6:473–486

    Article  CAS  Google Scholar 

  • Kleinman L, Lee YN, Springston SR et al (1994) Ozone formation at a rural site in the southeastern United States. J Geophys Research: Atmos 99(D2):3469–3482

    Article  CAS  Google Scholar 

  • Kumar R, Naja M, Venkataramani S et al (2010) Variations in surface ozone at Nainital: a high-altitude site in the central Himalayas. J Geophys Research: Atmos 115:D16

    Google Scholar 

  • Kumar R, Naja M, Satheesh SK et al (2011) Influences of the springtime northern Indian biomass burning over the central Himalayas. J Geophys Res Atmos 116:D19

    Article  Google Scholar 

  • Kumar A, Singh D, Singh BP et al (2015) Spatial and temporal variability of surface ozone and nitrogen oxides in urban and rural ambient air of Delhi-NCR, India. Air Qual Atmos Health 8:391–399. https://doi.org/10.1007/s11869-014-0309-0

    Article  CAS  Google Scholar 

  • Kumar A, Singh D, Kumar K et al (2018a) Distribution of VOCs in urban and rural atmospheres of subtropical India: temporal variation, source attribution, ratios, OFP and risk assessment. Sci Total Environ 613:492–501

    Article  Google Scholar 

  • Kumar R, Peuch VH, Crawford JH et al (2018b) Five steps to improve air-quality forecasts

  • Kutal G, Kolhe A, Mahajan C et al (2022) Characteristics of Surface ozone levels at climatologically and topographically distinct Metropolitan cities in India. Asian J Atmospheric Environ (AJAE) 16(2)

  • Lal S, Naja M, Subbaraya BH (2000) Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos Environ 34(17):2713–2724

    Article  CAS  Google Scholar 

  • Lal S, Sahu LK, Gupta S et al (2008) Emission characteristic of ozone related trace gases at a semi-urban site in the Indo-Gangetic plain using inter-correlations. J Atmos chem 60:189–204

    Article  CAS  Google Scholar 

  • Lal S, Venkataramani S, Naja M et al (2017) Loss of crop yields in India due to surface ozone: an estimation based on a network of observations. Environ Sci Pollut Res 24(26):20972–20981

    Article  CAS  Google Scholar 

  • Lawrence MG, von Kuhlmann R, Salzmann M et al (2003) The balance of effects of deep convective mixing on tropospheric ozone. Geophy Res Lett 30(18)

  • Lelieveld J, Barlas C, Giannadaki D et al (2013) Model calculated global, regional and megacity premature mortality due to air pollution. Atmos Chem Phys 13(14):7023–7037

    Article  Google Scholar 

  • Lesser VM, Rawlings JO, Spruill SE et al (1990) Ozone effects on agricultural crops: statistical methodologies and estimated dose-response relationships. Crop Sci 30(1):148–155

    Article  CAS  Google Scholar 

  • Li Z, Liu C, Cao C et al (2023) Impacts of the coal to gas policy on Rural Air VOC Level and ozone potentials in North China. Aerosol Air Qual Res 23:230136. https://doi.org/10.4209/aaqr.230136

    Article  CAS  Google Scholar 

  • Lu X, Chen N, Wang Y et al (2017) Radical budget and ozone chemistry during autumn in the atmosphere of an urban site in central China. J Geophys Research: Atmos 122(6):3672–3685

    Article  CAS  Google Scholar 

  • Madronich S (2006) Chemical evolution of gaseous air pollutants down-wind of tropical megacities: Mexico City case study. Atmos Environ 40(31):6012–6018

    Article  CAS  Google Scholar 

  • McCarthy MC, O’Brien TE, Charrier JG et al (2009) Characterization of the chronic risk and hazard of hazardous air pollutants in the United States using ambient monitoring data. Environ Health Perspec 117(5):790–796

    Article  CAS  Google Scholar 

  • Mills G, Buse A, Gimeno B et al (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41(12):2630–2643

    Article  CAS  Google Scholar 

  • Nair PR, Chand D, Lal S et al (2002) Temporal variations in surface ozone at Thumba (8.6 N, 77 E)-a tropical coastal site in India. Atmos Environ 36(4):603–610

    Article  CAS  Google Scholar 

  • Naja M, S Lal (2002) Surface ozone and precursor gases at Gadanki (13.5oN, 79.2oE), a tropical rural site in India. J Geophys Res 107(D14). https://doi.org/10.1029/2001JD000357

  • Ojha N, Naja M, Singh KP et al (2012) Variabilities in ozone at a semi-urban site in the Indo‐Gangetic Plain region: Association with the meteorology and regional processes. J Geophys Res Atmos 117:D20

    Article  Google Scholar 

  • Oltmans SJ, Levy IIH (1994) Surface ozone measurements from a global network. Atmos Environ 28:9–24. https://doi.org/10.1016/1352-2310(94)90019-1

    Article  CAS  Google Scholar 

  • Rajwar MC, Naja M, Srivastava P et al (2024) Online observation of light non-methane hydrocarbons (C2–C5) over the central Himalayas: influence of the Indo-Gangetic Plain region. https://doi.org/10.1016/j.apr.2024.102078. Atmospheric Pollution Research, doi

  • Reddy KK, Naja M, Ojha N et al (2012) Influences of the boundary layer evolution on surface ozone variations at a tropical rural site in India. J Earth Syst Sci 121:911–922

    Article  CAS  Google Scholar 

  • Sarangi T, Naja M, Ojha N et al (2014) First simultaneous measurements of ozone, CO, and NOy at a high-altitude regional representative site in the central Himalayas. J Geophys Res Atmos 119(3):1592–1611

    Article  CAS  Google Scholar 

  • Senik IA, Elansky NF, Belikov IB, Lisitsyna LV, Galaktionov VV, Kortunova ZV (2005) Main

  • Sexton K, Linder SH, Marko D et al (2007) Comparative assessment of air pollution–related health risks in Houston. Environ Health Perspect 115(10):1388–1393

    Article  Google Scholar 

  • Sillman S (1999) The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ 33(12):1821–1845

    Article  CAS  Google Scholar 

  • Sinha B, Singh Sangwan K, Maurya Y et al (2015) Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements. Atmos Chem Phys 15(16):9555–9576

    Article  CAS  Google Scholar 

  • Soni A, Decesari S, Shridhar V et al (2019) Investigation of potential source regions of atmospheric Black Carbon in the data deficit region of the western Himalayas and its foothills. Atmos Poll Res 10(6):1832–1842

    Article  CAS  Google Scholar 

  • Tripathi N, Sahu LK, Wang L et al (2022) Characteristics of VOC composition at urban and suburban sites of New Delhi, India in winter. Journal of Geophysical Research: Atmospheres, 127(12): e2021JD035342

  • USEPA, U.S. EPA Exposure Factors Handbook (1997) (1997) U.S. Environmental Protection Agency Washington DC EPA/600/P-95/002F a-c

  • Verma N, Lakhani A, Kumari KM (2017) High ozone episodes at a semi-urban site in India: photochemical generation and transport. Atmos Res 197:232–243

    Article  CAS  Google Scholar 

  • Wang X, Mauzerall DL (2004) Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos Environ 38(26):4383–4402

    Article  CAS  Google Scholar 

  • Weiss-Penzias P, Jaffe D, Swartzendruber P, Hafner W, Chand D, Prestbo E (2007) Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor observatory. Atmos Environ 41:4366–4379. https://doi.org/10.1016/j.atmosenv.2007.01.058

    Article  CAS  Google Scholar 

  • Yadav A, Bhatia A, Yadav S et al (2021) Growth, yield and quality of maize under ozone and Carbon Dioxide Interaction in North West India. Aerosol Air Qual Res 21:200194. https://doi.org/10.4209/aaqr.2020.05.0194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the funding received from ARIES and ISRO-ATCTM. We are grateful to the Directors ARIES and IIRS for supporting this study. SL thanks INSA New Delhi for the position. We also acknowledge NOAA Air Resources Laboratory for providing the HYSPLIT model and NASA-FIRMS for the MODIS fire counts data used in this study. Technical support in observations by Deepak Chausali and Nitin Pal is highly valued. We are grateful to editor and both reviewers for their comments/suggestions for further improving this manuscript.

Funding

This work was supported by ARIES, DST and ISRO-ATCTM projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Naja.

Ethics declarations

Ethical approval

This study does not involve human or animals and it is to confirm that no ethical approval is required.

Consent to participate

Research does not involve human subjects.

Consent to Publish

Research does not involve human subjects.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajwar, M.C., Naja, M., Kant, Y. et al. Ozone variability, its formation potential and crops losses in the himalayan foothills. Air Qual Atmos Health (2024). https://doi.org/10.1007/s11869-024-01572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11869-024-01572-9

Keywords

Navigation