Skip to main content

Advertisement

Log in

Adopting urban morphological indicators to land use regression modeling of seasonal mean PM2.5 concentrations for a high-density city

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

As a common air pollutant, particulate matter (PM2.5) can lead to serious health risks when inhaled over a long period of time, and it is therefore especially important for urban residents to understand the distribution characteristics of PM2.5 within the urban space. To predict long-term PM2.5 exposure at high resolution in high-density cities and quantify the influence of urban spatial morphological characteristics on the distribution of PM2.5 concentration produced under long-term conditions. The seasonal mean values of PM2.5 concentration from 23 monitoring stations in Shenzhen, China were used as dependent variables, and 6 categories of 502 potential predictor variables including urban/building spatial morphological indicators were used as independent variables. The seasonal land use regression models were developed by combining stepwise supervision and Akaike information criterion (AIC) selection with a leave-one-out-cross-validation (LOOCV) to test the prediction performance of the model. The adjusted R2 values were 0.86, 0.70, 0.70 and LOOCV R2 values were 0.83, 0.58, 0.68 in the first three seasons, respectively. In addition to the variables of land use category (i.e., the proportion of land for industrial and manufacturing, the proportion of land for green space and square, and the proportion of land for municipal utilities) and physical geography category (i.e., the count of parks and squares, average elevation), building coverage ratio and the diversity of building volume were also selected into the model as predictor variables. The R2 contributions of urban/building spatial morphology factors exceeded 10% for all three seasonal models. This study developed seasonal land use regression (LUR) models with good prediction performance for a high-density city and provided high-resolution spatial mapping of PM2.5 under steady-state conditions. The contribution of urban/building spatial morphological indicators to the interpretation of R2 for LUR models confirmed the effect of high-density urban morphology on the distribution of PM2.5 concentration. The quantitative correlation between PM2.5 concentration and spatial morphological factors such as building coverage and building volume diversity can provide a basis for incorporating air pollution dispersion considerations to urban planning at early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data analysed during this study are included in this published article [and its supplementary information files].

The datasets used during the current study are available from the corresponding author on reasonable request.

References

  • Abhijith KV, Kumar P, Gallagher J, Mcnabola A, Baldauf R, Pilla F, Broderick B, Di Sabatino S, Pulvirenti B (2017) Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments - a review. Atmos Environ 162:71–86

    Article  CAS  Google Scholar 

  • Aguilera I, Eeftens M, Meier R, Ducret-Stich RE, Schindler C, Ineichen A, Phuleria HC, Probst-Hensch N, Tsai M-Y, Kuenzli N (2015) Land use regression models for crustal and traffic-related PM2.5 constituents in four areas of the SAPALDIA study. Environ Res 140:377–384

    Article  CAS  Google Scholar 

  • Baldauf R (2017) Roadside vegetation design characteristics that can improve local, near-road air quality. Transp Res D Transp Environ 52:354–361

    Article  Google Scholar 

  • Barnes MJ, Brade TK, Mackenzie AR, Whyatt JD, Carruthers DJ, Stocker J, Cai X, Hewitt CN (2014) Spatially-varying surface roughness and ground-level air quality in an operational dispersion model. Environ Pollut 185:44–51

    Article  CAS  Google Scholar 

  • Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebret E, Pryl K, Vanreeuwijk H, Smallbone K, Vanderveen A (1997) Mapping urban air pollution using GIS: a regression-based approach. Int J Geogr Inf Sci 11:699–718

    Article  Google Scholar 

  • Briggs D, Aaheim A, Dore C, Hoek G, Petrakis M, Shaddick G (2005) Air pollution modelling for support to policy on health and environmental risks in Europe. Atmosphere final report

  • Brokamp C, Jandarov R, Rao MB, Lemasters G, Ryan P (2017) Exposure assessment models for elemental components of particulate matter in an urban environment: a comparison of regression and random forest approaches. Atmos Environ 151:1–11

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference - understanding AIC and BIC in model selection. Sociological Methods & Research 33:261–304

    Article  Google Scholar 

  • Cai J, Ge Y, Li H, Yang C, Liu C, Meng X, Wang W, Niu C, Kan L, Schikowski T, Yan B, Chillrud SN, Kan H, Jin L (2020a) Application of land use regression to assess exposure and identify potential sources in PM2.5, BC, NO2 concentrations. Atmos Environ 223:117267

    Article  CAS  Google Scholar 

  • Cai L, Zhuang M, Ren Y (2020b) A landscape scale study in Southeast China investigating the effects of varied green space types on atmospheric PM2.5 in mid-winter. Urban For Urban Green 49:126607

    Article  Google Scholar 

  • Chen W, Ran H, Cao X, Wang J, Teng D, Chen J, Zheng X (2020a) Estimating PM.25 with high-resolution 1-km AOD data and an improved machine learning model over Shenzhen, China. Sci Total Environ 746:141093

    Article  CAS  Google Scholar 

  • Chen X, Ding J, Wang J, Ge X, Raxidin M, Liang J, Chen X, Zhang Z, Cao X, Ding Y (2020b) Retrieval of fine-resolution aerosol optical depth (AOD) in semiarid urban areas using landsat data: a case study in Urumqi. NW China Remote Sensing 12:467

    Article  Google Scholar 

  • Dijkema MB, Gehring U, Van Strien RT, Van Der Zee SC, Fischer P, Hoek G, Brunekreef B (2011) A comparison of different approaches to estimate small-scale spatial variation in outdoor NO2 concentrations. Environ Health Perspect 119:670–675

    Article  CAS  Google Scholar 

  • Dons E, Van Poppel M, Panis LI, De Prins S, Berghmans P, Koppen G, Matheeussen C (2014) Land use regression models as a tool for short, medium and long term exposure to traffic related air pollution. Sci Total Environ 476:378–386

    Article  Google Scholar 

  • Eeftens M, Beelen R, De Hoogh K, Bellander T, Cesaroni G, Cirach M, Declercq C, Dedele A, Dons E, De Nazelle A, Dimakopoulou K, Eriksen K, Falq G, Fischer P, Galassi C, Grazuleviciene R, Heinrich J, Hoffmann B, Jerrett M, Keidel D, Korek M, Lanki T, Lindley S, Madsen C, Moelter A, Nador G, Nieuwenhuijsen M, Nonnemacher M, Pedeli X, Raaschou-Nielsen O, Patelarou E, Quass U, Ranzi A, Schindler C, Stempfelet M, Stephanou E, Sugiri D, Tsai M-Y, Yli-Tuomi T, Varro MJ, Vienneau D, Von Klot S, Wolf K, Brunekreef B, Hoek G (2012) Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European Study Areas; results of the ESCAPE project. Environ Sci Technol 46:11195–11205

    Article  CAS  Google Scholar 

  • Eeftens M, Odabasi D, Fluckiger B, Davey M, Ineichen A, Feigenwinter C, Tsai M-Y (2019) Modelling the vertical gradient of nitrogen dioxide in an urban area. Sci Total Environ 650:452–458

    Article  CAS  Google Scholar 

  • Eisenman TS, Churkina G, Jariwala SP, Kumar P, Lovasi GS, Pataki DE, Weinberger KR, Whitlow TH (2019) Urban trees, air quality, and asthma: an interdisciplinary review. Landsc Urban Plan 187:47–59

    Article  Google Scholar 

  • Fadel M, Ledoux F, Farhat M, Kfoury A, Courcot D, Afif C (2021) PM2.5 characterization of primary and secondary organic aerosols in two urban-industrial areas in the East Mediterranean. J Environ Sci 101:98–116

    Article  Google Scholar 

  • Ghassoun Y, Loewner M-O (2017) Land use regression models for total particle number concentrations using 2D, 3D and semantic parameters. Atmos Environ 166:362–373

    Article  CAS  Google Scholar 

  • Ghassoun Y, Loewner M-O, Weber S (2015) Exploring the benefits of 3D city models in the field of urban particles distribution modelling-a comparison of model results. Conference on 3D Geoinformation Science (3D GeoInfo), 2014

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived, from analysis of surface form. J Appl Meteorol 38:1262–1292

    Article  Google Scholar 

  • Hang J, Li Y, Sandberg M, Buccolieri R, Di Sabatino S (2012) The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Build Environ 56:346–360

    Article  Google Scholar 

  • Hoek G, Beelen R, De Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ 42:7561–7578

    Article  CAS  Google Scholar 

  • Huang Y, Lei C, Liu C-H, Perez P, Forehead H, Kong S, Zhou JL (2021) A review of strategies for mitigating roadside air pollution in urban street canyons. Environ Pollut 280:116971–116971

    Article  CAS  Google Scholar 

  • Jin L, Berman JD, Zhang Y, Thurston G, Zhang Y, Bell ML (2019) Land use regression study in Lanzhou, China: a pilot sampling and spatial characteristics of pilot sampling sites. Atmos Environ 210:253–262

    Article  CAS  Google Scholar 

  • Johnson JW (2004) Factors affecting relative weights: the influence of sampling and measurement error. Organ Res Methods 7:283–299

    Article  Google Scholar 

  • Kikumoto H, Ooka R (2012) A numerical study of air pollutant dispersion with bimolecular chemical reactions in an urban street canyon using large-eddy simulation. Atmos Environ 54:456–464

    Article  CAS  Google Scholar 

  • Knibbs LD, Coorey CP, Bechle MJ, Marshall JD, Hewson MG, Jalaludin B, Morgan GG, Barnett AG (2018a) Long-term nitrogen dioxide exposure assessment using back-extrapolation of satellite-based land-use regression models for Australia. Environ Res 163:16–25

    Article  CAS  Google Scholar 

  • Knibbs LD, Van Donkelaar A, Martin RV, Bechle MJ, Brauer M, Cohen DD, Cowie CT, Dirgawati M, Guo Y, Brauer M, Cohen DD, Cowie CT, Dirgawati M, Guo Y, Hanigan IC, Johnston FH, Marks GB, Marshall JD, Pereira G, Jalaludin B, Heyworth JS, Morgan GG, Barnett AG (2018b) Satellite-based land-use regression for continental-scale long-term ambient PM2.5 exposure assessment in Australia. Environ Sci Technol 52:12445–12455

    Article  CAS  Google Scholar 

  • Lee HJ, Chatfield RB, Strawa AW (2016) Enhancing the applicability of satellite remote sensing for PM2.5 estimation using modis deep blue AOD and land use regression in California, United States. Environ Sci Technol 50:6546–6555

    Article  CAS  Google Scholar 

  • Lelieveld J, Klingmueller K, Pozzer A, Poeschl U, Fnais M, Daiber A, Muenzel T (2019) Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 40:1590–1596

    Article  CAS  Google Scholar 

  • Li R, Ma T, Xu Q, Song X (2018) Using MAIAC AOD to verify the PM2.5 spatial patterns of a land use regression model. Environ Pollut 243:501–509

    Article  CAS  Google Scholar 

  • Li Z, Zhang H, Wen C-Y, Yang A-S, Juan Y-H (2020) Effects of frontal area density on outdoor thermal comfort and air quality. Build Environ 180:107028

    Article  Google Scholar 

  • Li Z, Ho K-F, Chuang H-C, Yim SHL (2021) Development and intercity transferability of land-use regression models for predicting ambient PM10, PM2.5, NO2 and O3 concentrations in northern Taiwan. Atmos Chem Phys 21:5063–5078

    Article  CAS  Google Scholar 

  • Lin Y-C, Lai C-Y, Chu C-P (2021) Air pollution diffusion simulation and seasonal spatial risk analysis for industrial areas. Environ Res 194:110693

    Article  CAS  Google Scholar 

  • Litschke T, Kuttler W (2008) On the reduction of urban particle concentration by vegetation - a review. Meteorol Z 17:229–240

    Article  Google Scholar 

  • Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, Coelho MSZS, Saldiva PHN, Lavigne E, Matus P, Ortega NV, Garcia SO, Pascal M, Stafoggia M, Scortichini M, Hashizume M, Honda Y, Hurtado-Diaz M, Cruz J, Nunes B, Teixeira JP, Kim H, Tobias A, Iniguez C, Forsberg B, Astrom C, Ragettli MS, Guo Y-L, Chen B-Y, Bell ML, Wright CY, Scovronick N, Garland RM, Milojevic A, Kysely J, Urban A, Orru H, Indermitte E, Jaakkola JJK, Ryti NRI, Katsouyanni K, Analitis A, Zanobetti A, Schwartz J, Chen J, Wu T, Cohen A, Gasparrini A, Kan H (2019) Ambient particulate air pollution and daily mortality in 652 cities. N Engl J Med 381:705–715

    Article  CAS  Google Scholar 

  • Liu B, Wu J, Wang J, Shi L, Meng H, Dai Q, Wang J, Song C, Zhang Y, Feng Y, Hopke PK (2021) Chemical characteristics and sources of ambient PM2.5 in a harbor area: quantification of health risks to workers from source-specific selected toxic elements. Environ Pollut 268:115926

    Article  CAS  Google Scholar 

  • Liu Y, Xu Y, Zhang F, Shu W (2020) A preliminary study on the influence of beijing urban spatial morphology on near-surface wind speed. Urban Clim 34:100703

    Article  Google Scholar 

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health 8:14

    Article  Google Scholar 

  • MEEPRC (Ministry of Ecology and Environment of the People’s Republic of China) (2012) Ambient air quality standards. GB 3095-2012. China Environmental Science Press, Beijing

  • Meng ZY, Ding GA, Xu XB, Xu XD, Yu HQ, Wang SF (2008) Vertical distributions of SO2 and NO2 in the lower atmosphere in Beijing urban areas, China. Sci Total Environ 390:456–465

    Article  CAS  Google Scholar 

  • MHUDPRC (Ministry of Housing and Urban-Rural Development of People’s Republic of China) (2013) Design standard for thermal environment of urban residential areas. JGJ 286-2013. China Architecture & Building Press, Beijing

  • Ng E, Yuan C, Chen L, Ren C, Fung JCH (2011) Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: a study in Hong Kong. Landsc Urban Plan 101:59–74

    Article  Google Scholar 

  • Pan W, Du J (2021) Impacts of urban morphological characteristics on nocturnal outdoor lighting environment in cities: an empirical investigation in Shenzhen. Build Environ 192:107587

    Article  Google Scholar 

  • Pitiranggon M, Johnson S, Haney J, Eisl H, Ito K (2021) Long-term trends in local and transported PM2.5 pollution in New York city. Atmos Environ 248:118238

    Article  CAS  Google Scholar 

  • Ramponi R, Blocken B, De Coo LB, Janssen WD (2015) CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Build Environ 92:152–166

    Article  Google Scholar 

  • Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. Boston, US

  • Rivera-Gonzlez LO, Zhang Z, Sanchez BN, Zhang K, Brown DG, Rojas-Bracho L, Osornio-Vargas A, Vadillo-Ortega F, O’neill MS (2015) An assessment of air pollutant exposure methods in Mexico city, Mexico. J Air Waste Manag Assoc 65:581–591

    Article  Google Scholar 

  • Sanchez M, Ambros A, Mila C, Salmon M, Balakrishnan K, Sambandam S, Sreekanth V, Marshall JD, Tonne C (2018) Development of land-use regression models for fine particles and black carbon in peri-urban South India. Sci Total Environ 634:77–86

    Article  CAS  Google Scholar 

  • Santiago JL, Martilli A (2010) A dynamic urban canopy parameterization for mesoscale models based on computational fluid dynamics Reynolds-averaged Navier-Stokes microscale simulations. Bound-Layer Meteorol 137:417–439

    Article  Google Scholar 

  • Saucy A, Roosli M, Kunzli N, Tsai M-Y, Sieber C, Olaniyan T, Baatjies R, Jeebhay M, Davey M, Fluckiger B, Naidoo RN, Dalvie MA, Badpa M, De Hoogh K (2018) Land use regression modelling of outdoor NO2 and PM2.5 concentrations in three low income areas in the western cape province, South Africa. Int J Environ Res Public Health 15:1452

    Article  Google Scholar 

  • Shi Y, Lau KK-L, Ng E (2017) Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment. Environ Res 157:17–29

    Article  CAS  Google Scholar 

  • Shi Y, Ho HC, Xu Y, Ng E (2018a) Improving satellite aerosol optical depth-PM2.5 correlations using land use regression with microscale geographic predictors in a high-density urban context. Atmos Environ 190:23–34

    Article  CAS  Google Scholar 

  • Shi Y, Xie X, Fung JC-H, Ng E (2018b) Identifying critical building morphological design factors of street-level air pollution dispersion in high-density built environment using mobile monitoring. Build Environ 128:248–259

    Article  Google Scholar 

  • Shi T, Hu Y, Liu M, Li C, Zhang C, Liu C (2020) Land use regression modelling of PM2.5 spatial variations in different seasons in urban areas. Sci Total Environ 743:140744

    Article  CAS  Google Scholar 

  • Son Y, Osornio-Vargas AR, O’neill MS, Hystad P, Texcalac-Sangrador JL, Ohman-Strickland P, Meng QY, Schwander S (2018) Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters. Sci Total Environ 639:40–48

    Article  CAS  Google Scholar 

  • Su JG, Jerrett M, Beckerman B (2009) A distance-decay variable selection strategy for land use regression modeling of ambient air pollution exposures. Sci Total Environ 407:3890–3898

    Article  CAS  Google Scholar 

  • Vu TV, Shi Z, Cheng J, Zhang Q, He K, Wang S, Harrison RM (2019) Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique. Atmos Chem Phys 19:11303–11314

    Article  CAS  Google Scholar 

  • Wang M, Gehring U, Hoek G, Keuken M, Jonkers S, Beelen R, Eeftens M, Postma DS, Brunekreef B (2015) Air pollution and lung function in dutch children: a comparison of exposure estimates and associations based on land use regression and dispersion exposure modeling approaches. Environ Health Perspect 123:847–851

    Article  CAS  Google Scholar 

  • Wei J, Li Z, Guo J, Sun L, Huang W, Xue W, Fan T, Cribb M (2019) Satellite-derived 1-km-resolution pm1 concentrations from 2014 to 2018 across China. Environ Sci Technol 53:13265–13274

    Article  Google Scholar 

  • Weissert LF, Salmond JA, Miskell G, Alavi-Shoshtari M, Williams DE (2018) Development of a microscale land use regression model for predicting NO2 concentrations at a heavy trafficked suburban area in Auckland, NZ. Sci Total Environ 619:112–119

    Article  Google Scholar 

  • WHO (world health Organization) (2018) Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. Accessed 29 Apr 2021

  • Wolf K, Cyrys J, Harcinikova T, Gua J, Kusch T, Hampel R, Schneider A, Peters A (2017) Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany. Sci Total Environ 579:1531–1540

    Article  CAS  Google Scholar 

  • Wu C-D, Chen Y-C, Pan W-C, Zeng Y-T, Chen M-J, Guo YL, Lung S-CC (2017) Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ Pollut 224:148–157

    Article  CAS  Google Scholar 

  • Wu C-D, Zeng Y-T, Lung S-CC (2018) A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability. Sci Total Environ 645:1456–1464

    Article  CAS  Google Scholar 

  • Xiong J, Yao R, Wang W, Yu W, Li B (2020) A spatial-and-temporal-based method for rapid particle concentration estimations in an urban environment. J Clean Prod 256:120331

    Article  CAS  Google Scholar 

  • Yu B, Liu H, Wu J, Hu Y, Zhang L (2010) Automated derivation of urban building density information using airborne lidar data and object-based method. Landsc Urban Plan 98:210–219

    Article  Google Scholar 

  • Yuan C, Ng E, Norford LK (2014) Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Build Environ 71:245–258

    Article  Google Scholar 

  • Zhang Y, Zhang L, Wei J, Liu L, Wang Y, Liu J, Zhou P, Wang L, Ding Z, Zhang Y (2021) Size-specific particulate air pollution and hospitalization for cardiovascular diseases: a case-crossover study in Shenzhen, China. Atmosp Environ 251:118271

    Article  CAS  Google Scholar 

  • Zhou Y, Liu H, Zhou J, Xia M (2019a) Gis-based urban afforestation spatial patterns and a strategy for PM2.5 removal. Forests 10:875

    Article  Google Scholar 

  • Zhou Y, Liu H, Zhou J, Xia M (2019b) Simulation of the impact of urban forest scale on PM2.5 and PM10 based on system dynamics. Sustainability 11:5998

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would acknowledge the Meterorogical Bureau of Shenzhen Municipality for sharing relevant geographical data of Shenzhen, China. We also acknowledge the anonymous reviewers for their constructive comments on the early manuscript of this paper.

Funding

This study was supported by the National Key R&D Program of China (No. 2018YFC0704900), Science and Technology Planning Project of Shenzhen Municipality (CN) (No. JCYJ20180305125219726) and the innovative development fund for graduate students of Shenzhen University (No.315-0000470518).

Author information

Authors and Affiliations

Authors

Contributions

Lei Yuan planned, supervised and sought funding for this study. Yang Wan performed the data analysis and prepared the paper with contributions from all co-authors. Xuesong Xu checked and revised this paper.

Corresponding author

Correspondence to Lei Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39178 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Yuan, L. & Xu, X. Adopting urban morphological indicators to land use regression modeling of seasonal mean PM2.5 concentrations for a high-density city. Air Qual Atmos Health 15, 559–573 (2022). https://doi.org/10.1007/s11869-021-01134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-021-01134-3

Keywords

Navigation