Skip to main content
Log in

Α dosimetry model of hygroscopic particle growth in the human respiratory tract

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The objective of the current study was to determine the growth and deposition of hygroscopic aerosol particles in the human respiratory tract. A hygroscopic particle growth methodology was incorporated into an existing particle dosimetry model (Exposure Dose Model 2, ExDoM2) using the κ-Köhler theory, the International Commission on Radiological Protection (ICRP) formulation for hygroscopic growth and mathematical formulations for taking into account the residence time, the influence of hygroscopicity on the particle’s density, and hygroscopic growth at 99.5% relative humidity. In order to validate ExDoM2, the results of the model were compared with experimental total deposition data for NaCl particles. The incorporation of the hygroscopic growth resulted in predictions closer to the experimental data than to model results without the use of a hygroscopic model formulation. The hygroscopicity plays a more significant role in the lower regions (tracheobronchial (TB) and alveolar-interstitial (AI) regions) of the respiratory tract. In particular, the hygroscopicity of NaCl particles decreases the deposition in the AI region for particles in the size range 0.03 μm ≤ aerodynamic diameter (dae) ≤ 0.2 μm while for the size range 0.3 μm ≤ dae ≤ 3 μm, the hygroscopicity increases the deposition in the AI region. In addition, it is observed that the deposition of (NH4)2SO4 and NH4NO3 particles with dae ≥ 0.30 μm is higher when the hygroscopic properties of the particles are taken into consideration. However, the particle deposition in the range 0.02 μm ≤ dae ≤ 0.25 μm is decreased due to hygroscopicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aleksandropoulou V, Lazaridis M (2013) Development and application of a model (ExDoM) for calculating the respiratory tract dose and retention of particles under variable exposure conditions. Air Qual Atmos Health 6:13–26

    Article  CAS  Google Scholar 

  • Anselm A, Heibel T, Gebhart J, Ferron G (1990) “In vivo”-studies of growth factors of sodium chloride particles in the human respiratory tract. J Aerosol Sci 21:427–430

    Article  Google Scholar 

  • Asgharian BA (2004) A model of deposition of hygroscopic particles in the human lung. Aerosol Sci Technol 38:938–947

    Article  CAS  Google Scholar 

  • Blanchard JD, Willeke K (1984) Total deposition of ultrafine sodium chloride particles in human lungs. J Appl Physiol 57:1850–1856

    Article  CAS  Google Scholar 

  • Buonanno G, Giovinco G, Morawska L, Stabile L (2015) Lung cancer risk of airborne particles for Italian population. Environ Res 142:443–451

    Article  CAS  Google Scholar 

  • Carrico CM, Petters MD, Kreidenweis SM, Collett JL, Engling G, Malm WC (2008) Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments. J Geophys Res Atmos 113. https://doi.org/10.1029/2007JD009274

  • Chalvatzaki E, Lazaridis M (2015) Development and application of a dosimetry model (ExDoM2) for calculating internal dose of specific particle bound metals in the human body. Inhal Toxicol 27(6):308–320

    Article  CAS  Google Scholar 

  • Ferron G (1977) The size of soluble aerosol particles as a function of the humidity of the air. Application to the human respiratory tract. J Aerosol Sci 8:251–267

    Article  CAS  Google Scholar 

  • Ferron GA, Haider B, Kreyling WG (1988a) Inhalation of salt aerosol particles I. Estimation of the temperature and relative humidity in the upper human airways. J Aerosol Sci 19:343–363

    Article  Google Scholar 

  • Ferron GA, Kreyling WG, Haider B (1988b) Inhalation of salt aerosol particles II. Growth and deposition in the human respiratory tract. J Aerosol Sci 19:611–631

    Article  CAS  Google Scholar 

  • Ferron GA, Karg E, Peter JE (1993) Estimation of deposition of polydisperse hygroscopic aerosols in the human respiratory tract. J Aerosol Sci 24(5):655–670

    Article  CAS  Google Scholar 

  • Ferron GA, Karg E, Busch B, Heyder J (2005) Ambient particles at an urban, semi-urban and rural site in Central Europe: hygroscopic properties. Atmos Environ 39:343–352

    Article  CAS  Google Scholar 

  • Gebhart J, Heigwer G, Heyder J, Roth C, Stahlhofen W (1998) The use of light scattering photometry in aerosol medicine. J Aerosol Med 1:89–112

    Article  Google Scholar 

  • Good N, Topping DO, Allan JD, Flynn M, Fuentes E, Irwin M, Williams PI, Coe H, McFiggans G (2010) Consistency between parameterisations of aerosol hygroscopicity and CCN activity during the RHaMBLe discovery cruise. Atmos Chem Phys 10:3189–3203

    Article  CAS  Google Scholar 

  • Haddrell AE, Davies JF, Miles REH, Reid JP, Dailey LA, Murnane D (2014) Dynamics of aerosol size during inhalation: hygroscopic growth of commercial nebulizer formulations. Int J Pharm 463(1):50–61

    Article  CAS  Google Scholar 

  • Haddrell AE, Davies JF, Reid JP (2015) Dynamics of particle size on inhalation of environmental aerosol and impact on deposition fraction. Environ Sci Technol 49:14512–14521

    Article  CAS  Google Scholar 

  • Hansen JE, Ampaya EP (1975) Human air space shapes, sizes, areas, and volumes. J Appl Physiol 38(6):990–995

    Article  CAS  Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior and measurement of airborne particles, 2nd edn. John Wiley & Sons Inc, Hoboken

  • Hofmann W, Koblinger L (1990) Monte Carlo modeling of aerosol deposition in human lungs. Part II: deposition fractions and their sensitivity to parameter variations. J Aerosol Sci 21:674–688

    Article  Google Scholar 

  • Hussain M, Madl P, Khan A (2011) Lung deposition predictions of airborne particles and the emergence of contemporary diseases part-I. Health 2(2):51–59

    Google Scholar 

  • ICRP (1994) Human respiratory tract model for radiological protection. ICRP publication 66. Ann. ICRP 24 (1-3). Pergamon Press, Oxford

  • ICRP (2015) Occupational intakes of radionuclides: part 1. ICRP Publication 130. Ann. ICRP 44 (2)

  • James AC (1988) Lung dosimetry. In: Nazaroff WW, Nero AV (eds) Radon and its decay products in indoor air. John Wiley and Sons, Inc., New York, pp 259–309

    Google Scholar 

  • Koblinger L, Hofmann W (1990) Monte Carlo modeling of aerosol deposition in human lungs. Part I: simulation of particle transport in a stochastic lung structure. J Aerosol Sci 21:661–674

    Article  Google Scholar 

  • Köhler H (1936) The nucleus in and the growth of hygroscopic droplets. Trans Faraday Soc 32:1152–1161

    Article  Google Scholar 

  • Kreidenweis SM, Koehler K, DeMott PJ, Prenni AJ, Carrico C, Ervens B (2005) Water activity and activation diameters from Hygroscopicity data - part I: theory and application to inorganic salts. Atmos Chem Phys 5:1357–1370

    Article  CAS  Google Scholar 

  • Kristensson A, Rissler J, Löndahl J, Johansson C, Swietlicki E (2013) Size-resolved respiratory tract deposition of sub-micrometer aerosol particles n a residential area with wintertime wood combustion. Aerosol Air Qual Res 13:24–35

    Article  Google Scholar 

  • Liu HJ, Zhao CS, Nekat B, Ma N, Wiedensohler A, van Pinxteren D, Spindler G, Müller K, Herrmann H (2014) Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China plain. Atmos Chem Phys 14:2525–2539

    Article  CAS  Google Scholar 

  • Liu YC, Wu ZJ, Tan TY, Wang YJ, Qin YH, Zheng J, Li MR, Hu M (2016) Estimation of the PM2.5 effective hygroscopic parameter and water content based on particle chemical composition: methodology and case study. Sci China Earth Sci 59:1683–1691

    Article  CAS  Google Scholar 

  • Löndahl J, Massling A, Swietlicki E, Bräuner EV, Ketzel M, Pagels J, Loft S (2009) Experimentally determined human respiratory tract deposition of airborne particles at a busy street. Environ. Sci Technol 43:4659–4664

    Article  CAS  Google Scholar 

  • Markelj J, Madronich S, Pompe M (2016) Modeling of hygroscopicity parameter kappa of organic aerosols using quantitative structure-property relationships. J Atmos Chem 74:357–376. https://doi.org/10.1007/s10874-016-9347-3

    Article  CAS  Google Scholar 

  • Martonen TB, Bell KA, Phalen RF, Wilson AF, Ho A (1982) Growth rate measurements and deposition modeling of hygroscopic aerosols in human tracheobronchial models. Ann Occup Hyg 26:93–108

    CAS  Google Scholar 

  • Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7:1961–1971

    Article  CAS  Google Scholar 

  • Phalen RF, Oldham MJ, Beaucage CB, Crocker TT, Mortensen JD (1985) Postnatal enlargement of human tracheo-bronchial airways and implications for particle deposition. Anat Rec 212(4):368–380

    Article  CAS  Google Scholar 

  • Rissler J (2005) Hygroscopic properties of aerosols from open-air burning and controlled combustion of biomass, Ph.D. thesis, Div of Nucl Phys Dep of Phys, Lund Univ, Lund, Sweden

  • Rissler J, Svenningsson B, Fors EO, Bilde M, Swietlicki E (2010) An evaluation and comparison of cloud condensation nucleus activity models: predicting particle critical saturation from growth at subsaturation. J Geophys Res Atmos 115. https://doi.org/10.1029/2010JD014391

  • Sánchez-Soberón F, Mari M, Kumar V, Rovira J, Nadal M, Schuhmacher M (2015) An approach to assess the particulate matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract. Environ Res 143:10–18

    Article  CAS  Google Scholar 

  • Schum GM, Yeh HC (1980) Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol 42:461–480

    Article  Google Scholar 

  • Snider G, Weagle CL, Murdymootoo KK, Ring A, Ritchie Y, Stone E, Walsh A, Akoshile C, Anh NX, Balasubramanian R, Brook J, Qonitan FD, Dong J, Griffith D, He K, Holben BN, Kahn R, Lagrosas N, Lestari P, Ma Z, Misra A, Norford LK, Quel EJ, Salam A, Schichtel B, Segev L, Tripathi S, Wang C, Yu C, Zhang Q, Zhang Y, Brauer M, Cohen A, Gibson MD, Liu Y, Martins JV, Rudich Y, Martin RV (2016) Variation in global chemical composition of PM2:5: emerging results from SPARTAN. Atmos Chem Phys 16:9629–9653

    Article  CAS  Google Scholar 

  • Tu KW, Knutson EO (1984) Total deposition of ultrafine hydrophobic and hygroscopic aerosols in the human respiratory system. Aerosol Sci Technol 3:453–466

    Article  Google Scholar 

  • Varghese SK, Gangamma S (2006) Particle deposition in human respiratory tract: effect of water-soluble fraction. Aerosol Air Qual Res 6(4):360–379

    Article  CAS  Google Scholar 

  • Vu TV, Delgado-Saborit JM, Harrison RM (2015) A review of hygroscopic growth factors of submicron aerosols from different sources and its implication for calculation of lung deposition efficiency of ambient aerosols. Air Qual Atmos Health 8:429–440

    Article  CAS  Google Scholar 

  • Vu TV, Ondracek J, Zdímal V, Schwarz J, Delgado-Saborit JM, Harrison RM (2017) Physical properties and lung deposition of particles emitted from five major indoor sources. Air Qual Atmos Health 10:1–14. https://doi.org/10.1007/s11869-016-0424-1

    Article  CAS  Google Scholar 

  • Weibel ER (1963) Morphometry of the human lung. Academic Press, New York

    Book  Google Scholar 

  • Winkler-Heil R, Ferron G, Hofmann W (2014) Calculation of hygroscopic particle deposition in the human lung. Inhal Toxicol 26(3):193–206

    Article  CAS  Google Scholar 

  • Wu ZJ, Poulain L, Henning S, Dieckmann K, Birmili W, Merkel M, van Pinxteren D, Spindler G, Müller K, Strat-mann F, Herrmann H, Wiedensohler A (2013) Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign. Atmos Chem Phys 13:7983–7996

    Article  CAS  Google Scholar 

  • Yan Y, Fu P, Jing B, Peng C, Boreddy SKR, Yang F, Wei L, Sun Y, Wang Z, Ge M (2017) Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea. Sci Total Environ 578:307–316

    Article  CAS  Google Scholar 

  • Yeh HC, Schum GM (1980) Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol 42:461–480

    Article  CAS  Google Scholar 

  • Youn JS, Csavina J, Rine KP, Shingler T, Taylor MP, Sáez AE, Betterton EA, Sorooshian A (2016) Hygroscopic properties and respiratory system deposition behavior of particulate matter emitted by mining and smelting operations. Environ Sci Technol 50:11706–11713

    Article  CAS  Google Scholar 

  • Yu CP, Diu CK (1982) A comparative study of aerosol deposition in different lung models. Am Ind Hyg Assoc J 43:54–65

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union’s LIFE Programme in the framework of the Index-Air LIFE15 ENV/PT/000674 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftheria Chalvatzaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalvatzaki, E., Lazaridis, M. Α dosimetry model of hygroscopic particle growth in the human respiratory tract. Air Qual Atmos Health 11, 471–482 (2018). https://doi.org/10.1007/s11869-018-0555-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-018-0555-7

Keywords

Navigation