Skip to main content

Advertisement

Log in

The influence of air quality model resolution on health impact assessment for fine particulate matter and its components

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Health impact assessments for fine particulate matter (PM2.5) often rely on simulated concentrations generated from air quality models. However, at the global level, these models often run at coarse resolutions, resulting in underestimates of peak concentrations in populated areas. This study aims to quantitatively examine the influence of model resolution on the estimates of mortality attributable to PM2.5 and its species in the USA. We use GEOS-Chem, a global 3-D model of atmospheric composition, to simulate the 2008 annual average concentrations of PM2.5 and its six species over North America. The model was run at a fine resolution of 0.5 × 0.66° and a coarse resolution of 2 × 2.5°, and mortality was calculated using output at the two resolutions. Using the fine-modeled concentrations, we estimate that 142,000 PM2.5-related deaths occurred in the USA in 2008, and the coarse resolution produces a national mortality estimate that is 8 % lower than the fine-model estimate. Our spatial analysis of mortality shows that coarse resolutions tend to substantially underestimate mortality in large urban centers. We also re-grid the fine-modeled concentrations to several coarser resolutions and repeat mortality calculation at these resolutions. We found that model resolution tends to have the greatest influence on mortality estimates associated with primary species and the least impact on dust-related mortality. Our findings provide evidence of possible biases in quantitative PM2.5 health impact assessments in applications of global atmospheric models at coarse spatial resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abt Associates I (2013) Environmental Benefits and Mapping Program (BenMAP, Version 4.0.67)

  • Alexander B et al (2005) Sulfate formation in sea‐salt aerosols: constraints from oxygen isotopes. J Geophys Res Atmos (1984–2012) 110

  • Anenberg SC, Horowitz LW, Tong DQ, West J (2010) An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Perspect 118:1189–1195

    Article  CAS  Google Scholar 

  • Anenberg SC et al (2012) Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls

  • Arunachalam S, Wang B, Davis N, Baek BH, Levy JI (2011) Effect of chemistry-transport model scale and resolution on population exposure to PM2.5 from aircraft emissions during landing and takeoff. Atmos Environ 45:3294–3300. doi:10.1016/j.atmosenv.2011.03.029

    Article  CAS  Google Scholar 

  • Beelen R et al (2008) Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ Health Perspect 116:196–202

    Article  Google Scholar 

  • Bey I et al (2001) Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J Geophys Res Atmos (1984–2012) 106:23073–23095

    Article  CAS  Google Scholar 

  • Bond TC et al (2007) Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000. Glob Biogeochem Cycles 21

  • Burnett RT et al (2014) An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure

  • Chen D, Wang Y, McElroy M, He K, Yantosca R, Sager PL (2009) Regional CO pollution and export in China simulated by the high-resolution nested-grid GEOS-Chem model. Atmos Chem Phys 9:3825–3839

    Article  CAS  Google Scholar 

  • Cohen AJ et al (2005) The global burden of disease due to outdoor air pollution. J Toxic Environ Health A 68:1301–1307

    Article  CAS  Google Scholar 

  • Cooke W, Liousse C, Cachier H, Feichter J (1999) Construction of a 1× 1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J Geophys Res Atmos (1984–2012) 104:22137–22162

    Article  CAS  Google Scholar 

  • Daniels MJ, Dominici F, Samet JM, Zeger SL (2000) Estimating particulate matter-mortality dose-response curves and threshold levels: an analysis of daily time-series for the 20 largest US cities. Am J Epidemiol 152:397–406

    Article  CAS  Google Scholar 

  • De Meij A, Wagner S, Cuvelier C, Dentener F, Gobron N, Thunis P, Schaap M (2007) Model evaluation and scale issues in chemical and optical aerosol properties over the greater Milan area (Italy), for June 2001. Atmos Res 85:243–267

    Article  Google Scholar 

  • Dockery DW et al (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329:1753–1759

    Article  CAS  Google Scholar 

  • Duncan Fairlie T, Jacob DJ, Park RJ (2007) The impact of transpacific transport of mineral dust in the United States. Atmos Environ 41:1251–1266

    Article  Google Scholar 

  • Dunlea E et al (2009) Evolution of Asian aerosols during transpacific transport in INTEX-B. Atmos Chem Phys 9:7257–7287

    Article  CAS  Google Scholar 

  • EPA U (2007) Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for ozone, PM2. 5, and regional haze. US Environmental Protection Agency, Office of Air Quality Planning and Standards

  • EPA. US (2012) Report to congress on black carbon. (EPA-450/R-12-001)

  • Fann N, Lamson AD, Anenberg SC, Wesson K, Risley D, Hubbell BJ (2012) Estimating the national public health burden associated with exposure to ambient PM2. 5 and ozone. Risk Anal 32:81–95

    Article  Google Scholar 

  • Fann N, Fulcher CM, Baker K (2013) The recent and future health burden of air pollution apportioned across US sectors. Environ Sci Technol 47:3580–3589

    Article  CAS  Google Scholar 

  • Filleul L et al (2005) Twenty five year mortality and air pollution: results from the French PAARC survey. Occup Environ Med 62:453–460

    Article  CAS  Google Scholar 

  • Fisher JA et al (2011) Sources, distribution, and acidity of sulfate–ammonium aerosol in the Arctic in winter–spring. Atmos Environ 45:7301–7318

    Article  CAS  Google Scholar 

  • Fountoukis C, Nenes A (2007) ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca 2+–Mg 2+–NH 4+–Na+–SO4 2–NO3–Cl–H2O aerosols. Atmos Chem Phys 7:4639–4659

    Article  CAS  Google Scholar 

  • Generoso S, Bey I, Labonne M, Bréon FM (2008) Aerosol vertical distribution in dust outflow over the Atlantic: comparisons between GEOS‐Chem and Cloud‐aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). J Geophys Res Atmos (1984–2012) 113

  • Giglio L, Randerson J, Van der Werf G, Kasibhatla P, Collatz G, Morton D, DeFries R (2010) Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 7:1171–1186

    Article  Google Scholar 

  • Heald CL, Ridley DA, Kreidenweis SM, Drury EE (2010) Satellite observations cap the atmospheric organic aerosol budget. Geophys Res Lett 37

  • Heald CL et al (2011) Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. Atmos Chem Phys 11:12673–12696

    Article  CAS  Google Scholar 

  • Heald CL et al (2012) Atmospheric ammonia and particulate inorganic nitrogen over the United States. Atmos Chem Phys Discuss 12

  • Henze DK, Seinfeld JH, Shindell DT (2009) Inverse modeling and mapping US air quality influences of inorganic PM 2.5 precursor emissions using the adjoint of GEOS-Chem. Atmos Chem Phys 9:5877–5903

    Article  CAS  Google Scholar 

  • Jaeglé L, Quinn P, Bates T, Alexander B, Lin J-T (2011) Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos Chem Phys 11:3137–3157

    Article  Google Scholar 

  • Janssen N et al (2011) Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2. 5. Environ Health Perspect 119:1691–1699

    Article  CAS  Google Scholar 

  • Jimenez J et al (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525–1529

    Article  CAS  Google Scholar 

  • Johnson MS, Meskhidze N, Praju Kiliyanpilakkil V (2012) A global comparison of GEOS‐Chem‐predicted and remotely‐sensed mineral dust aerosol optical depth and extinction profiles. J Adv Model Earth Syst 4

  • Kheirbek I, Wheeler K, Walters S, Kass D, Matte T (2013) PM2. 5 and ozone health impacts and disparities in New York City: sensitivity to spatial and temporal resolution. Air Qual Atmos Health 6:473–486

    Article  CAS  Google Scholar 

  • Krewski D et al (2009) Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality, vol 140. Health Effects Institute, Boston

    Google Scholar 

  • Laden F, Schwartz J, Speizer FE, Dockery DW (2006) Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 173:667–672

    Article  CAS  Google Scholar 

  • Li Y, Crawford-Brown DJ (2011) Assessing the co-benefits of greenhouse gas reduction: health benefits of particulate matter related inspection and maintenance programs in Bangkok, Thailand. Sci Total Environ 409:1774–1785

    Article  CAS  Google Scholar 

  • Li Y et al (2010) Burden of disease attributed to anthropogenic air pollution in the United Arab Emirates: estimates based on observed air quality data. Sci Total Environ 408:5784–5793

    Article  CAS  Google Scholar 

  • Liao K-J et al (2007) Sensitivities of ozone and fine particulate matter formation to emissions under the impact of potential future climate change. Environ Sci Technol 41:8355–8361

    Article  CAS  Google Scholar 

  • Lim SS et al (2013) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260

    Article  Google Scholar 

  • Liu H, Jacob DJ, Bey I, Yantosca RM (2001) Constraints from 210Pb and 7Be on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields. J Geophys Res Atmos (1984–2012) 106:12109–12128

    Article  CAS  Google Scholar 

  • Luan Y, Jaeglé L (2013) Composite study of aerosol export events from East Asia and North America. Atmos Chem Phys 13:1221–1242. doi:10.5194/acp-13-1221-2013

    Article  CAS  Google Scholar 

  • Mao J, Fan S, Jacob D, Travis K (2013) Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols. Atmos Chem Phys 13:509–519

    Article  CAS  Google Scholar 

  • Mensink C, De Ridder K, Deutsch F, Lefebre F, Van de Vel K (2008) Examples of scale interactions in local, urban, and regional air quality modelling. Atmos Res 89:351–357. doi:10.1016/j.atmosres.2008.03.020

    Article  CAS  Google Scholar 

  • Olivier JG, Van Aardenne JA, Dentener FJ, Pagliari V, Ganzeveld LN, Peters JA (2005) Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distribution of key sources in 2000. Environ Sci 2:81–99

    Article  Google Scholar 

  • Ostro B (2004) Outdoor air pollution WHO Environmental burden of disease series

  • Park RJ, Jacob DJ, Chin M, Martin RV (2003) Sources of carbonaceous aerosols over the United States and implications for natural visibility. J Geophys Res Atmos (1984–2012) 108

  • Park RJ, Jacob DJ, Field BD, Yantosca RM, Chin M (2004) Natural and transboundary pollution influences on sulfate‐nitrate‐ammonium aerosols in the United States: implications for policy. J Geophys Res Atmos (1984–2012) 109

  • Philip S, Martin RV, van Donkelaar A, JW-H Lo, Wang Y, Chen D, Zhang L, Kasibhatla PS, Wang S, Zhang Q, Lu Z, Streets DG, Bittman S, Macdonald DJ (2014) Global chemical composition of ambient fine particulate matter estimated from satellite observations and a chemical transport model environmental health perspectives. Submitted

  • Pope CA (2000) Invited commentary: particulate matter-mortality exposure-response relations and threshold. Am J Epidemiol 152:407–412

    Article  Google Scholar 

  • Pope CA III, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath CW Jr (1995) Particulate air pollution as a predictor of mortality in a prospective study of US adults. Am J Respir Crit Care Med 151:669–674

    Article  Google Scholar 

  • Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141

    Article  CAS  Google Scholar 

  • Punger EM, West JJ (2013) The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the USA. Air Qual Atmos Health 6:563–573

    Article  CAS  Google Scholar 

  • Schwartz J, Laden F, Zanobetti A (2002) The concentration-response relation between PM (2.5) and daily deaths. Environ Health Perspect 110:1025

    Article  CAS  Google Scholar 

  • Smith KR et al (2010) Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. Lancet 374:2091–2103

    Article  CAS  Google Scholar 

  • Streets DG et al (2006) Revisiting China’s CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE‐P) mission: synthesis of inventories, atmospheric modeling, and observations. J Geophys Res Atmos (1984–2012) 111

  • Thompson TM, Saari RK, Selin NE (2014) Air quality resolution for health impact assessment: influence of regional characteristics. Atmos Chem Phys 14:969–978. doi:10.5194/acp-14-969-2014

    Article  CAS  Google Scholar 

  • van der Werf GR et al (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735

    Article  Google Scholar 

  • van Donkelaar A et al (2008) Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada. Atmos Chem Phys 8:2999–3014

    Article  Google Scholar 

  • van Donkelaar A, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C, Villeneuve PJ (2010) Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect 118:847

    Article  Google Scholar 

  • Walker J, Philip S, Martin R, Seinfeld J (2012) Simulation of nitrate, sulfate, and ammonium aerosols over the United States. Atmos Chem Phys 12:11213–11227

    Article  CAS  Google Scholar 

  • Wang X, Mauzerall DL (2006) Evaluating impacts of air pollution in China on public health: implications for future air pollution and energy policies. Atmos Environ 40:1706–1721

    Article  CAS  Google Scholar 

  • Wang YX, McElroy MB, Jacob DJ, Yantosca RM (2004) A nested grid formulation for chemical transport over Asia: applications to CO. J Geophys Res Atmos (1984–2012) 109

  • Wesely M (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ (1967) 23:1293–1304

    Article  CAS  Google Scholar 

  • West JJ, Fiore AM, Horowitz LW, Mauzerall DL (2006) Global health benefits of mitigating ozone pollution with methane emission controls. Proc Natl Acad Sci U S A 103:3988–3993

    Article  CAS  Google Scholar 

  • Zhang L et al (2012) Nitrogen deposition to the United States: distribution, sources, and processes. Atmos Chem Phys Discuss 12:241–282

    Article  CAS  Google Scholar 

  • Zhang L, Kok JF, Henze DK, Li Q, Zhao C (2013) Improving simulations of fine dust surface concentrations over the western United States by optimizing the particle size distribution. Geophys Res Lett 40:3270–3275

    Article  CAS  Google Scholar 

  • Zhu L et al (2013) Constraining US ammonia emissions using TES remote sensing observations and the GEOS‐Chem adjoint model. J Geophys Res Atmos 118:3355–3368

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported through NASA Applied Sciences Program grant NNX09AN77G. Dr. Ying Li was partially supported by a postdoctoral fellowship from the Earth Institute at Columbia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Kinney.

Appendix

Appendix

Table 4 Comparing national mortality estimates attributable to each PM2.5 species based on modeled 0.5 × 0.66° concentrations using two approaches: (1) directly applying the simulated annual average concentrations of each species (approach used in this study) and (2) calculating mortality for the total PM2.5 concentration relative to the total PM2.5 minus one species (Punger and West 2013)
Fig. 8
figure 8figure 8figure 8

Modeled annual average PM2.5 species concentrations in 2008 using GEOS-Chem output at a fine (0.5 × 0.66°) resolution and b coarse (2 × 2.5°) resolution (unit, μg/m3)

Fig. 9
figure 9

Correlation analysis of the dust concentration and population using fine (0.5 × 0.66°) model results

Fig. 10
figure 10

The difference in estimated mortality by county attributed to total PM2.5 between the fine-model resolution (0.5 × 0.66°) and the coarse resolution (2 × 2.5°)

Fig. 11
figure 11

a Estimates of national all-cause mortality due to PM2.5 species at various grid resolutions, including the fine-model resolution (0.5 × 0.66°) and three re-gridded resolution (1 × 1.25, 2 × 2.5, and 4 × 5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Henze, D.K., Jack, D. et al. The influence of air quality model resolution on health impact assessment for fine particulate matter and its components. Air Qual Atmos Health 9, 51–68 (2016). https://doi.org/10.1007/s11869-015-0321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-015-0321-z

Keywords

Navigation