Skip to main content

Advertisement

Log in

Molecular Determinants and Other Factors to Guide Selection of Patients for Hepatic Resection of Metastatic Colorectal Cancer

  • Lower Gastrointestinal Cancers (AB Benson, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Treatment for metastatic colorectal cancer (CRC) has changed significantly over the last few decades as cytotoxic and targeted chemotherapies have evolved and resection of (technically feasible) colorectal liver metastases (CRLM) has become standard of care for eligible patients. Overall, survival for metastatic CRC has considerably improved, but recurrences are common. Numerous clinical risk scores have been suggested to guide patient selection for CRLM resection, but none perfectly predict outcomes; therefore, a personalized approach to metastatic CRC treatment using genetic profiles for risk stratification and prognostication is a critically important advancement. All patients with suspected metastatic CRC should undergo genetic testing for common oncogene mutations (e.g., KRAS, BRAF, and NRAS) in addition to a triphasic CT scan of the chest, abdomen, and pelvis; if hepatectomy may be entertained and there is concern about the future liver remnant (FLR), liver volumetrics should also be performed. MRI and PET are useful adjuncts for cases in which diagnosis or extent of disease is unclear. The decision to operate should be individualized and based on each patient’s condition, tumor biology, and technical resectability. Genetic profiles should be used to inform multidisciplinary meetings surrounding topics of chemotherapy and surgical resection, as well as patient discussions concerning the risks and benefits of surgery. In the end, most patients with technically resectable colorectal cancers and adequate cardiopulmonary fitness benefit from surgical resection, as it remains the only chance of long-term survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

  2. Colorectal Cancer Statistics | How common is colorectal cancer? https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html. Accessed 1 Mar 2021

  3. Tsilimigras DI, Ntanasis-Stathopoulos I, Bagante F, Moris D, Cloyd J, Spartalis E, et al. Clinical significance and prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver metastases: a systematic review of the current evidence. Surg Oncol. 2018;27:280–8. https://doi.org/10.1016/j.suronc.2018.05.012.

  4. Colon Cancer (Version 2.2021). In: National Comprehensive Cancer Network. https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed 2 Mar 2021

  5. •• Tosi F, Magni E, Amatu A, Mauri G, Bencardino K, Truini M, et al. Effect of KRAS and BRAF mutations on survival of metastatic colorectal cancer after liver resection: a systematic review and meta-analysis. Clin Colorectal Cancer. 2017;16:e153–63. https://doi.org/10.1016/j.clcc.2017.01.004 This article is the most recent systematic review and meta-analysis concerning the prognostic value of KRAS and BRAF mutations in patients undergoing CRLM resection.

    Article  PubMed  Google Scholar 

  6. Ayez N, van der Stok EP, de Wilt H, Radema SA, van Hillegersberg R, Roumen RM, et al. Neo-adjuvant chemotherapy followed by surgery versus surgery alone in high-risk patients with resectable colorectal liver metastases: the CHARISMA randomized multicenter clinical trial. BMC Cancer. 2015;15:180. https://doi.org/10.1186/s12885-015-1199-8.

  7. Chow FC-L, Chok KS-H. Colorectal liver metastases: an update on multidisciplinary approach. World J Hepatol. 2019;11:150–72. https://doi.org/10.4254/wjh.v11.i2.150.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Andreou A, Aloia TA, Brouquet A, Dickson PV, Zimmitti G, Maru DM, et al. Margin status remains an important determinant of survival after surgical resection of colorectal liver metastases in the era of modern chemotherapy. Ann Surg. 2013;257:1079–88. https://doi.org/10.1097/SLA.0b013e318283a4d1.

  9. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67:177–93. https://doi.org/10.3322/caac.21395.

  10. Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg. 1999;230:309–18; discussion 318-321. https://doi.org/10.1097/00000658-199909000-00004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gomez D, Cameron IC. Prognostic scores for colorectal liver metastasis: clinically important or an academic exercise? HPB (Oxford). 2010;12:227–38. https://doi.org/10.1111/j.1477-2574.2010.00158.x.

    Article  Google Scholar 

  12. Roberts KJ, White A, Cockbain A, Hodson J, Hidalgo E, Toogood GJ, et al. Performance of prognostic scores in predicting long-term outcome following resection of colorectal liver metastases. Br J Surg. 2014;101:856–66. https://doi.org/10.1002/bjs.9471.

  13. Kumar R, Dennison AR, Robertson V, Jones MJ, Neal CP, Garcea G. Clinical risk scores in the current era of neoadjuvant chemotherapy for colorectal liver metastases. ANZ J Surg. 2018;88:E16–20. https://doi.org/10.1111/ans.13688.

    Article  PubMed  Google Scholar 

  14. Hallet J, Sa Cunha A, Adam R, Goéré D, Bachellier P, Azoulay D, et al. Factors influencing recurrence following initial hepatectomy for colorectal liver metastases. Br J Surg. 2016;103:1366–76. https://doi.org/10.1002/bjs.10191.

  15. Jones RP, Jackson R, Dunne DFJ, Malik HZ, Fenwick SW, Poston GJ, et al. Systematic review and meta-analysis of follow-up after hepatectomy for colorectal liver metastases. Br J Surg. 2012;99:477–86. https://doi.org/10.1002/bjs.8667.

  16. Datta J, Smith JJ, Chatila WK, McAuliffe JC, Kandoth C, Vakiani E, et al. Coaltered Ras/B-raf and TP53 is associated with extremes of survivorship and distinct patterns of metastasis in patients with metastatic colorectal cancer. Clin Cancer Res. 2020;26:1077–85. https://doi.org/10.1158/1078-0432.CCR-19-2390.

    Article  CAS  PubMed  Google Scholar 

  17. Chuang S-C, Huang C-W, Chen Y-T, Ma C-J, Tsai H-L, Chang T-K, et al. Effect of KRAS and NRAS mutations on the prognosis of patients with synchronous metastatic colorectal cancer presenting with liver-only and lung-only metastases. Oncol Lett. 2020;20:2119–30. https://doi.org/10.3892/ol.2020.11795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brudvik KW, Kopetz SE, Li L, Conrad C, Aloia TA, Vauthey J-N. Meta-analysis of KRAS mutations and survival after resection of colorectal liver metastases. Br J Surg. 2015;102:1175–83. https://doi.org/10.1002/bjs.9870.

    Article  CAS  PubMed  Google Scholar 

  19. Margonis GA, Spolverato G, Kim Y, Karagkounis G, Choti MA, Pawlik TM. Effect of KRAS mutation on long-term outcomes of patients undergoing hepatic resection for colorectal liver metastases. Ann Surg Oncol. 2015;22:4158–65. https://doi.org/10.1245/s10434-015-4587-z.

    Article  PubMed  Google Scholar 

  20. Shindoh J, Nishioka Y, Yoshioka R, Sugawara T, Sakamoto Y, Hasegawa K, et al. KRAS mutation status predicts site-specific recurrence and survival after resection of colorectal liver metastases irrespective of location of the primary lesion. Ann Surg Oncol. 2016;23:1890–6. https://doi.org/10.1245/s10434-016-5087-5.

  21. Kemeny NE, Chou JF, Capanu M, Gewirtz AN, Cercek A, Kingham TP, et al. KRAS mutation influences recurrence patterns in patients undergoing hepatic resection of colorectal metastases. Cancer. 2014;120:3965–71. https://doi.org/10.1002/cncr.28954.

  22. • Saadat LV, Boerner T, Goldman DA, Gonen M, Frankel TL, Vakiani E, et al. Association of RAS mutation location and oncologic outcomes after resection of colorectal liver metastases. Ann Surg Oncol. 2021;28:817–25. https://doi.org/10.1245/s10434-020-08862-3 This study is a large single-center, retrospective review of patients undergoing CRLM resection, which analyzes the impact of RAS mutation location on pathological features, DFS, and OS.

    Article  PubMed  Google Scholar 

  23. •• Margonis GA, Buettner S, Andreatos N, Sasaki K, Ijzermans JNM, van Vugt JLA, et al. Anatomical resections improve disease-free survival in patients with KRAS-mutated colorectal liver metastases. Ann Surg. 2017;266:641–9. https://doi.org/10.1097/SLA.0000000000002367 In this study, tissue-sparing hepatectomies were associated with worse DFS in patients with KRAS-mutated CRLM. The authors concluded that anatomic hepatectomies may be warranted for KRAS-mutated CRLM.

    Article  PubMed  Google Scholar 

  24. •• Passot G, Denbo JW, Yamashita S, Kopetz SE, Chun YS, Maru D, et al. Is hepatectomy justified for patients with RAS mutant colorectal liver metastases? An analysis of 524 patients undergoing curative liver resection. Surgery. 2017;161:332–40. https://doi.org/10.1016/j.surg.2016.07.032 This study demonstrated the negative impact of specific risk factors (node-positive primary, individual CRLM > 3 cm, more than 7 cycles of systemic chemotherapy given) on OS following hepatectomy for KRAS-mutated CRLM.

    Article  PubMed  Google Scholar 

  25. Innocenti F, Ou F-S, Qu X, Zemla TJ, Niedzwiecki D, Tam R, et al. Mutational analysis of patients with colorectal cancer in CALGB/SWOG 80405 identifies new roles of microsatellite instability and tumor mutational burden for patient outcome. J Clin Oncol. 2019;37:1217–27. https://doi.org/10.1200/JCO.18.01798.

  26. Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran S-E, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. The Lancet Oncology. 2014;15:1065–75. https://doi.org/10.1016/S1470-2045(14)70330-4.

    Article  CAS  PubMed  Google Scholar 

  27. Cremolini C, Loupakis F, Antoniotti C, Lupi C, Sensi E, Lonardi S, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol. 2015;16:1306–15. https://doi.org/10.1016/S1470-2045(15)00122-9.

  28. Cremolini C, Marmorino F, Loupakis F, Masi G, Antoniotti C, Salvatore L, et al. TRIBE-2: a phase III, randomized, open-label, strategy trial in unresectable metastatic colorectal cancer patients by the GONO group. BMC Cancer. 2017;17:408. https://doi.org/10.1186/s12885-017-3360-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lahti SJ, Xing M, Zhang D, Lee JJ, Magnetta MJ, Kim HS. KRAS status as an independent prognostic factor for survival after yttrium-90 radioembolization therapy for unresectable colorectal cancer liver metastases. J Vasc Interv Radiol. 2015;26:1102–11. https://doi.org/10.1016/j.jvir.2015.05.032.

    Article  PubMed  Google Scholar 

  30. Loupakis F, Cremolini C, Masi G, Lonardi S, Zagonel V, Salvatore L, et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med. 2014;371:1609–18. https://doi.org/10.1056/NEJMoa1403108.

  31. Marques RP, Duarte GS, Sterrantino C, Pais HL, Quintela A, Martins AP, et al. Triplet (FOLFOXIRI) versus doublet (FOLFOX or FOLFIRI) backbone chemotherapy as first-line treatment of metastatic colorectal cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2017;118:54–62. https://doi.org/10.1016/j.critrevonc.2017.08.006.

  32. Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27:1386–422. https://doi.org/10.1093/annonc/mdw235.

    Article  PubMed  Google Scholar 

  33. Martin J, Petrillo A, Smyth EC, Shaida N, Khwaja S, Cheow HK, et al. Colorectal liver metastases: current management and future perspectives. World J Clin Oncol. 2020;11:761–808. https://doi.org/10.5306/wjco.v11.i10.761.

  34. Frankel TL, Vakiani E, Nathan H, DeMatteo RP, Kingham TP, Allen PJ, et al. Mutation location on the RAS oncogene affects pathologic features and survival after resection of colorectal liver metastases. Cancer. 2017;123:568–75. https://doi.org/10.1002/cncr.30351.

    Article  CAS  PubMed  Google Scholar 

  35. Margonis GA, Buettner S, Andreatos N, Kim Y, Wagner D, Sasaki K, et al. Association of BRAF mutations with survival and recurrence in surgically treated patients with metastatic colorectal liver cancer. JAMA Surg. 2018;153(7):e180996. https://doi.org/10.1001/jamasurg.2018.0996 This study demonstrated that BRAF V600E mutations were associated with worse DFS and OS after hepatectomy for CRLM, whereas non-V600E BRAF mutations were similar to the wild-type BRAF group in all outcome measure.

  36. Nakayama I, Hirota T, Shinozaki E. BRAF mutation in colorectal cancers: from prognostic marker to targetable mutation. Cancers (Basel). 2020;12(11):3236. https://doi.org/10.3390/cancers12113236.

    Article  CAS  Google Scholar 

  37. Pikoulis E, Margonis GA, Andreatos N, Sasaki K, Angelou A, Polychronidis G, et al. Prognostic role of BRAF mutations in colorectal cancer liver metastases. Anticancer Res. 2016;36:4805–11. https://doi.org/10.21873/anticanres.11040.

    Article  CAS  PubMed  Google Scholar 

  38. Graf W, Cashin PH, Ghanipour L, Enblad M, Botling J, Terman A, et al. Prognostic impact of BRAF and KRAS mutation in patients with colorectal and appendiceal peritoneal metastases scheduled for CRS and HIPEC. Ann Surg Oncol. 2020;27:293–300. https://doi.org/10.1245/s10434-019-07452-2.

  39. Tran B, Kopetz S, Tie J, Gibbs P, Jiang Z-Q, Lieu CH, et al. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer. 2011;117:4623–32. https://doi.org/10.1002/cncr.26086.

  40. Morkel M, Riemer P, Bläker H, Sers C. Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget. 2015;6:20785–800. https://doi.org/10.18632/oncotarget.4750.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gagnière J, Dupré A, Gholami SS, Pezet D, Boerner T, Gönen M, et al. Is hepatectomy justified for BRAF mutant colorectal liver metastases?: a multi-institutional analysis of 1497 patients. Ann Surg. 2020;271:147–54. https://doi.org/10.1097/SLA.0000000000002968.

  42. Yaeger R, Cercek A, Chou JF, Sylvester BE, Kemeny NE, Hechtman JF, et al. BRAF mutation predicts for poor outcomes after metastasectomy in patients with metastatic colorectal cancer. Cancer. 2014;120:2316–24. https://doi.org/10.1002/cncr.28729.

  43. Schirripa M, Bergamo F, Cremolini C, Casagrande M, Lonardi S, Aprile G, et al. BRAF and RAS mutations as prognostic factors in metastatic colorectal cancer patients undergoing liver resection. Br J Cancer. 2015;112:1921–8. https://doi.org/10.1038/bjc.2015.142.

  44. Teng H-W, Huang Y-C, Lin J-K, Chen W-S, Lin T-C, Jiang J-K, et al. BRAF mutation is a prognostic biomarker for colorectal liver metastasectomy. J Surg Oncol. 2012;106:123–9. https://doi.org/10.1002/jso.23063.

  45. • Johnson B, Jin Z, Truty MJ, Smoot RL, Nagorney DM, Kendrick ML, et al. Impact of metastasectomy in the multimodality approach for BRAF V600E metastatic colorectal cancer: the Mayo Clinic experience. Oncologist. 2018;23:128–34. https://doi.org/10.1634/theoncologist.2017-0230 This single-center study demonstrated that hepatectomy for BRAF V600E-mutated CRLM may improve DFS and OS.

    Article  CAS  PubMed  Google Scholar 

  46. Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY, et al. Non-V600 BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 2017;35:2624–30. https://doi.org/10.1200/JCO.2016.71.4394.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cercek A, Braghiroli MI, Chou JF, Hechtman JF, Kemeny N, Saltz L, et al. Clinical features and outcomes of patients with colorectal cancers harboring NRAS mutations. Clin Cancer Res. 2017;23:4753–60. https://doi.org/10.1158/1078-0432.CCR-17-0400.

  48. Summers MG, Smith CG, Maughan TS, Kaplan R, Escott-Price V, Cheadle JP. BRAF and NRAS locus-specific variants have different outcomes on survival to colorectal cancer. Clin Cancer Res. 2017;23:2742–9. https://doi.org/10.1158/1078-0432.CCR-16-1541.

    Article  CAS  PubMed  Google Scholar 

  49. Yan P, Klingbiel D, Saridaki Z, Ceppa P, Curto M, McKee TA, et al. Reduced expression of SMAD4 is associated with poor survival in colon cancer. Clin Cancer Res. 2016;22:3037–47. https://doi.org/10.1158/1078-0432.CCR-15-0939.

    Article  CAS  PubMed  Google Scholar 

  50. Smith JJ, Chatila WK, Sanchez-Vega F, Datta J, Connell LC, Szeglin BC, et al. Genomic stratification beyond Ras/B-Raf in colorectal liver metastasis patients treated with hepatic arterial infusion. Cancer Med. 2019;8:6538–48. https://doi.org/10.1002/cam4.2415.

  51. Koopman M, Kortman G. a. M, Mekenkamp L, Ligtenberg MJL, Hoogerbrugge N, Antonini NF, et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer. 2009;100:266–73. https://doi.org/10.1038/sj.bjc.6604867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Venderbosch S, Nagtegaal ID, Maughan TS, Smith CG, Cheadle JP, Fisher D, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res. 2014;20:5322–30. https://doi.org/10.1158/1078-0432.CCR-14-0332.

  53. Petrelli F, Tomasello G, Borgonovo K, Ghidini M, Turati L, Dallera P, et al. Prognostic survival associated with left-sided vs right-sided colon cancer: a systematic review and meta-analysis. JAMA Oncol. 2017;3:211–9. https://doi.org/10.1001/jamaoncol.2016.4227.

  54. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28:3219–26. https://doi.org/10.1200/JCO.2009.27.1825.

  55. Margonis GA, Amini N, Buettner S, Kim Y, Wang J, Andreatos N, et al. The prognostic impact of primary tumor site differs according to the KRAS mutational status: a study by the International Genetic Consortium for Colorectal Liver Metastasis. Ann Surg. 2019;273:1165–72. https://doi.org/10.1097/SLA.0000000000003504.

  56. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20. https://doi.org/10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharp M, Corp D. A phase III study of pembrolizumab (MK-3475) vs. chemotherapy in microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) stage IV colorectal carcinoma (MK-3475-177/KEYNOTE-177). Available online. https://clinicaltrials.gov/ct2/show/NCT02563002.

  58. Liu D-X, Li D-D, He W, Ke C-F, Jiang W, Tang J-H, et al. PD-1 blockade in neoadjuvant setting of DNA mismatch repair-deficient/microsatellite instability-high colorectal cancer. Oncoimmunology. 2020;9:1711650. https://doi.org/10.1080/2162402X.2020.1711650.

  59. • Chun YS, Passot G, Yamashita S, Nusrat M, Katsonis P, Loree JM, et al. Deleterious effect of RAS and evolutionary high-risk TP53 double mutation in colorectal liver metastases. Ann Surg. 2019;269:917–23. https://doi.org/10.1097/SLA.0000000000002450 This study demonstrated that concomitant RAS and TP53 mutations are associated with decreased survival after resection of CRLM.

    Article  PubMed  Google Scholar 

  60. Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards the introduction of the “Immunoscore” in the classification of malignant tumours. J Pathol. 2014;232:199–209. https://doi.org/10.1002/path.4287.

  61. Lalos A, Tülek A, Tosti N, Mechera R, Wilhelm A, Soysal S, et al. Prognostic significance of CD8+ T-cells density in stage III colorectal cancer depends on SDF-1 expression. Sci Rep. 2021;11(1):775. https://doi.org/10.1038/s41598-020-80382-2.

  62. Pagès F, Mlecnik B, Marliot F, Bindea G, Ou F-S, Bifulco C, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391:2128–39. https://doi.org/10.1016/S0140-6736(18)30789-X.

  63. Mlecnik B, Van den Eynde M, Bindea G, Church SE, Vasaturo A, Fredriksen T, et al. Comprehensive intrametastatic immune quantification and major impact of Immunoscore on survival. J Natl Cancer Inst. 2018;110(1). https://doi.org/10.1093/jnci/djx123.

  64. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 2016;35:816–26. https://doi.org/10.1038/onc.2015.139.

    Article  CAS  PubMed  Google Scholar 

  65. Samarendra H, Jones K, Petrinic T, Silva MA, Reddy S, Soonawalla Z, et al. A meta-analysis of CXCL12 expression for cancer prognosis. Br J Cancer. 2017;117:124–35. https://doi.org/10.1038/bjc.2017.134.

  66. Stanisavljević L, Aßmus J, Storli KE, Leh SM, Dahl O, Myklebust MP. CXCR4, CXCL12 and the relative CXCL12-CXCR4 expression as prognostic factors in colon cancer. Tumour Biol. 2016;37:7441–52. https://doi.org/10.1007/s13277-015-4591-8.

    Article  CAS  PubMed  Google Scholar 

  67. Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, et al. PTEN: multiple functions in human malignant tumors. Front Oncol. 2015;5:24. https://doi.org/10.3389/fonc.2015.00024.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang Q, Shi Y-L, Zhou K, Wang L-L, Yan Z-X, Liu Y-L, et al. PIK3CA mutations confer resistance to first-line chemotherapy in colorectal cancer. Cell Death Dis. 2018;9:739. https://doi.org/10.1038/s41419-018-0776-6.

  69. Mei ZB, Duan CY, Li CB, Cui L, Ogino S. Prognostic role of tumor PIK3CA mutation in colorectal cancer: a systematic review and meta-analysis. Ann Oncol. 2016;27:1836–48. https://doi.org/10.1093/annonc/mdw264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu J-M, Wang Y, Wang Y-L, Wang Y, Liu T, Ni M, et al. PIK3CA mutations contribute to acquired cetuximab resistance in patients with metastatic colorectal cancer. Clin Cancer Res. 2017;23:4602–16. https://doi.org/10.1158/1078-0432.CCR-16-2738.

  71. • Yamashita S, Chun Y-S, Kopetz SE, Maru D, Conrad C, Aloia TA, et al. APC and PIK3CA mutational cooperativity predicts pathologic response and survival in patients undergoing resection for colorectal liver metastases. Ann Surg. 2020;272:1080–5. https://doi.org/10.1097/SLA.0000000000002245 This study demonstrated that concurrent mutations in APC and PIK3CA were associated with worse DFS and OS after hepatectomy for CRLM.

    Article  PubMed  Google Scholar 

  72. Aubin J-M, Bressan AK, Grondin SC, Dixon E, MacLean AR, Gregg S, et al. Assessing resectability of colorectal liver metastases: how do different subspecialties interpret the same data? Can J Surg. 2018;61:251–6. https://doi.org/10.1503/cjs.014616.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ignatavicius P, Oberkofler CE, Chapman WC, DeMatteo RP, Clary BM, D’Angelica MI, et al. Choices of therapeutic strategies for colorectal liver metastases among expert liver surgeons: a throw of the dice? Ann Surg. 2020;272:715–22. https://doi.org/10.1097/SLA.0000000000004331.

    Article  PubMed  Google Scholar 

  74. Balachandran VP, Arora A, Gönen M, Ito H, Turcotte S, Shia J, et al. A validated prognostic multigene expression assay for overall survival in resected colorectal cancer liver metastases. Clin Cancer Res. 2016;22:2575–82. https://doi.org/10.1158/1078-0432.CCR-15-1071.

  75. Bedin C, Enzo MV, Del Bianco P, Pucciarelli S, Nitti D, Agostini M. Diagnostic and prognostic role of cell-free DNA testing for colorectal cancer patients. Int J Cancer. 2017;140:1888–98. https://doi.org/10.1002/ijc.30565.

    Article  CAS  PubMed  Google Scholar 

  76. Hur K, Toiyama Y, Schetter AJ, Okugawa Y, Harris CC, Boland CR, et al. Identification of a metastasis-specific microRNA signature in human colorectal cancer. J Natl Cancer Inst. 2015;107(3):dju492. https://doi.org/10.1093/jnci/dju492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Boussios S, Ozturk MA, Moschetta M, Karathanasi A, Zakynthinakis-Kyriakou N, Katsanos KH, et al. The developing story of predictive biomarkers in colorectal cancer. J Pers Med. 2019;9(1):12. https://doi.org/10.3390/jpm9010012.

  78. Fontana E, Eason K, Cervantes A, Salazar R, Sadanandam A. Context matters-consensus molecular subtypes of colorectal cancer as biomarkers for clinical trials. Ann Oncol. 2019;30:520–7. https://doi.org/10.1093/annonc/mdz052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stintzing S, Wirapati P, Lenz H-J, Neureiter D, Fischer von Weikersthal L, Decker T, et al. Consensus molecular subgroups (CMS) of colorectal cancer (CRC) and first-line efficacy of FOLFIRI plus cetuximab or bevacizumab in the FIRE3 (AIO KRK-0306) trial. Ann Oncol. 2019;30:1796–803. https://doi.org/10.1093/annonc/mdz387.

  80. Lenz H-J, Ou F-S, Venook AP, Hochster HS, Niedzwiecki D, Goldberg RM, et al. Impact of consensus molecular subtype on survival in patients with metastatic colorectal cancer: results from CALGB/SWOG 80405 (Alliance). J Clin Oncol. 2019;37:1876–85. https://doi.org/10.1200/JCO.18.02258.

  81. Dasari A, Morris VK, Allegra CJ, Atreya C, Benson AB, Boland P, et al. ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal–Anal Task Forces whitepaper. Nat Rev Clin Oncol. 2020;17:757–70. https://doi.org/10.1038/s41571-020-0392-0.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24. https://doi.org/10.1126/scitranslmed.3007094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tarazona N, Gimeno-Valiente F, Gambardella V, Zuñiga S, Rentero-Garrido P, Huerta M, et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol. 2019;30:1804–12. https://doi.org/10.1093/annonc/mdz390.

  84. Datta J, Narayan RR, Goldman DA, Chatila WK, Gonen M, Strong J, et al. Distinct genomic profiles are associated with conversion to resection and survival in patients with initially unresectable colorectal liver metastases treated with systemic and hepatic artery chemotherapy. Ann Surg. 2020. https://doi.org/10.1097/SLA.0000000000004613.

  85. Buisman FE, Homs MYV, Grünhagen DJ, Filipe WF, Bennink RJ, Besselink MGH, et al. Adjuvant hepatic arterial infusion pump chemotherapy and resection versus resection alone in patients with low-risk resectable colorectal liver metastases - the multicenter randomized controlled PUMP trial. BMC Cancer. 2019;19:327. https://doi.org/10.1186/s12885-019-5515-6.

  86. Boerner T, Zambirinis C, Gagnière J, Chou JF, Gonen M, Kemeny NE, et al. Early liver metastases after “failure” of adjuvant chemotherapy for stage III colorectal cancer: is there a role for additional adjuvant therapy? HPB (Oxford). 2021;23(4):601–8. https://doi.org/10.1016/j.hpb.2020.08.018.

    Article  Google Scholar 

  87. Datta J, Narayan RR, Kemeny NE, D’Angelica MI. Role of hepatic artery infusion chemotherapy in treatment of initially unresectable colorectal liver metastases: a review. JAMA Surg. 2019;154:768–76. https://doi.org/10.1001/jamasurg.2019.1694.

    Article  PubMed  Google Scholar 

  88. Muaddi H, D’Angelica M, Wiseman JT, Dillhoff M, Latchana N, Roke R, et al. Safety and feasibility of initiating a hepatic artery infusion pump chemotherapy program for unresectable colorectal liver metastases: a multicenter, retrospective cohort study. J Surg Oncol. 2021;123:252–60. https://doi.org/10.1002/jso.26270.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Cancer Institute and Fogarty International Center and National Institute of Mental Health of the National Institutes of Health under Award Numbers T32CA090217 and D43TW010543. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Abbott MD, FACS.

Ethics declarations

Conflict of Interest

TM Diehl declares that he has no conflict of interest. DA Abbott declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diehl, T.M., Abbott, D.E. Molecular Determinants and Other Factors to Guide Selection of Patients for Hepatic Resection of Metastatic Colorectal Cancer. Curr. Treat. Options in Oncol. 22, 82 (2021). https://doi.org/10.1007/s11864-021-00878-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00878-5

Keywords

Navigation