Skip to main content

Advertisement

Log in

Contemporary Management of Anaplastic Thyroid Cancer

  • Head and Neck Cancer (CP Rodriguez, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Anaplastic thyroid cancer (ATC) is a rare but very aggressive form of undifferentiated thyroid cancer. Due to its rapid rate of progression and invasive nature, ATC poses significant risks of morbidity and mortality. The cornerstone in the management of ATC remains a prompt diagnosis of the disease and timely management of complications depending on the stage of disease. Surgery continues to offer a higher chance of a cure, although not all patients are candidates for surgical management. Patients with advanced disease may be considered for palliative surgery to reduce morbidity and complications from advanced disease. With the advent of new molecular testing and improved methods of diagnosis, novel therapeutic targets have been identified. Systemic therapy (chemotherapy and radiation therapy) as well as novel immunotherapy have shown some promise in patients with targetable genetic mutations. Patients should therefore have molecular testing of their tumor—if it is unresectable—and be tested for mutations that are targetable. Mutation-targeted therapy may be effective and may result in a significant response to allow surgical intervention for exceptional responders. Overall, patients who receive all three modalities of therapy (surgery, chemotherapy, and radiation therapy) have the highest overall survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

ATC:

Anaplastic thyroid cancer

DTC:

Differentiated thyroid cancer

PDTC:

Poorly differentiated thyroid cancer

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017;13(11):644–60. https://doi.org/10.1038/nrendo.2017.76.

    Article  CAS  PubMed  Google Scholar 

  2. Smallridge RC, Copland JA. Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol (R Coll Radiol). 2010;22(6):486–97. https://doi.org/10.1016/j.clon.2010.03.013.

    Article  CAS  Google Scholar 

  3. Dijkstra B, Prichard RS, Lee A, Kelly LM, Smyth PP, Crotty T, et al. Changing patterns of thyroid carcinoma. Ir J Med Sci. 2007;176(2):87–90. https://doi.org/10.1007/s11845-007-0041-y.

    Article  CAS  PubMed  Google Scholar 

  4. Tan RK, Finley RK, Driscoll D, Bakamjian V, Hicks WL, Shedd DP. Anaplastic carcinoma of the thyroid: a 24-year experience. Head Neck. 1995;17(1):41–7 discussion 7-8.

    Article  CAS  Google Scholar 

  5. Zivaljevic V, Slijepcevic N, Paunovic I, Diklic A, Kalezic N, Marinkovic J, et al. Risk factors for anaplastic thyroid cancer. Int J Endocrinol. 2014;2014:815070–6. https://doi.org/10.1155/2014/815070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kitahara CM, McCullough ML, Franceschi S, Rinaldi S, Wolk A, Neta G, et al. Anthropometric factors and thyroid cancer risk by histological subtype: pooled analysis of 22 prospective studies. Thyroid. 2016;26(2):306–18. https://doi.org/10.1089/thy.2015.0319.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schmid D, Ricci C, Behrens G, Leitzmann MF. Adiposity and risk of thyroid cancer: a systematic review and meta-analysis. Obes Rev. 2015;16(12):1042–54. https://doi.org/10.1111/obr.12321.

    Article  CAS  PubMed  Google Scholar 

  8. Ma J, Huang M, Wang L, Ye W, Tong Y, Wang H. Obesity and risk of thyroid cancer: evidence from a meta-analysis of 21 observational studies. Med Sci Monit. 2015;21:283–91. https://doi.org/10.12659/msm.892035.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Olson E, Wintheiser G, Wolfe KM, Droessler J, Silberstein PT. Epidemiology of thyroid cancer: a review of the National Cancer Database, 2000-2013. Cureus. 2019;11(2):e4127. https://doi.org/10.7759/cureus.4127.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–66. https://doi.org/10.1172/jci85271.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318–29. https://doi.org/10.1093/hmg/ddu749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chintakuntlawar AV, Foote RL, Kasperbauer JL, Bible KC. Diagnosis and management of anaplastic thyroid cancer. Endocrinol Metab Clin N Am. 2019;48(1):269. https://doi.org/10.1016/j.ecl.2018.10.010.

    Article  Google Scholar 

  13. Tiedje V, Ting S, Herold T, Synoracki S, Latteyer S, Moeller LC, et al. NGS based identification of mutational hotspots for targeted therapy in anaplastic thyroid carcinoma. Oncotarget. 2017;8(26):42613–20. https://doi.org/10.18632/oncotarget.17300 This manuscript is the largest study to analyze mutations for targeted therapy in anaplastic thyroid cancer. It provides a good overview of mutations and targetable driver genetic alterations in ATC.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oishi N, Kondo T, Ebina A, Sato Y, Akaishi J, Hino R, et al. Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: identification of TERT mutation as an independent risk factor for transformation. Mod Pathol. 2017;30(11):1527–37. https://doi.org/10.1038/modpathol.2017.75.

    Article  CAS  PubMed  Google Scholar 

  15. •• Pozdeyev N, Gay LM, Sokol ES, Hartmaier R, Deaver KE, Davis S, et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res. 2018;24(13):3059–68. https://doi.org/10.1158/1078-0432.ccr-18-0373 This manuscript describes novel genetic mutations of important diagnostic and therapeutic significance in advanced thyroid cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ravi N, Yang M, Gretarsson S, Jansson C, Mylona N, Sydow SR, et al. Identification of targetable lesions in anaplastic thyroid cancer by genome profiling. Cancers (Basel). 2019;11(3). https://doi.org/10.3390/cancers11030402.

  17. Jung CW, Han KH, Seol H, Park S, Koh JS, Lee SS, et al. Expression of cancer stem cell markers and epithelial-mesenchymal transition-related factors in anaplastic thyroid carcinoma. Int J Clin Exp Pathol. 2015;8(1):560–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiacchio S, Lorenzoni A, Boni G, Rubello D, Elisei R, Mariani G. Anaplastic thyroid cancer: prevalence, diagnosis and treatment. Minerva Endocrinol. 2008;33(4):341–57.

    CAS  PubMed  Google Scholar 

  19. Bishop JA, Sharma R, Westra WH. PAX8 immunostaining of anaplastic thyroid carcinoma: a reliable means of discerning thyroid origin for undifferentiated tumors of the head and neck. Hum Pathol. 2011;42(12):1873–7. https://doi.org/10.1016/j.humpath.2011.02.004.

    Article  CAS  PubMed  Google Scholar 

  20. Pitt SC, Moley JF. Medullary, anaplastic, and metastatic cancers of the thyroid. Semin Oncol. 2010;37(6):567–79. https://doi.org/10.1053/j.seminoncol.2010.10.010.

    Article  PubMed  Google Scholar 

  21. Nel CJ, van Heerden JA, Goellner JR, Gharib H, McConahey WM, Taylor WF, et al. Anaplastic carcinoma of the thyroid: a clinicopathologic study of 82 cases. Mayo Clin Proc. 1985;60(1):51–8. https://doi.org/10.1016/s0025-6196(12)65285-9.

    Article  CAS  PubMed  Google Scholar 

  22. Ha EJ, Baek JH, Lee JH, Kim JK, Song DE, Kim WB, et al. Core needle biopsy could reduce diagnostic surgery in patients with anaplastic thyroid cancer or thyroid lymphoma. Eur Radiol. 2016;26(4):1031–6. https://doi.org/10.1007/s00330-015-3921-y.

    Article  PubMed  Google Scholar 

  23. Smallridge RC, Ain KB, Asa SL, Bible KC, Brierley JD, Burman KD, et al. American Thyroid Association Guidelines for management of patients with anaplastic thyroid Cancer. Thyroid. 2012;22(11):1104–39. https://doi.org/10.1089/thy.2012.0302.

    Article  PubMed  Google Scholar 

  24. Khatami F, Tavangar SM. Liquid biopsy in thyroid Cancer: new insight. Int J Hematol Oncol Stem Cell Res. 2018;12(3):235–48.

    PubMed  PubMed Central  Google Scholar 

  25. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–95. https://doi.org/10.1016/j.cell.2006.11.001.

    Article  CAS  PubMed  Google Scholar 

  26. Sandulache VC, Williams MD, Lai SY, Lu C, William WN, Busaidy NL, et al. Real-time genomic characterization utilizing circulating cell-free DNA in patients with anaplastic thyroid carcinoma. Thyroid. 2017;27(1):81–7. https://doi.org/10.1089/thy.2016.0076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. El Achi H, Khoury JD, Loghavi S. Liquid biopsy by next-generation sequencing: a multimodality test for management of cancer. Curr Hematol Malig Rep. 2019;14:358–67. https://doi.org/10.1007/s11899-019-00532-w.

    Article  PubMed  Google Scholar 

  28. Amin MB. AJCC Cancer staging manual. Berlin: Springer; 2019.

    Google Scholar 

  29. Ljubas J, Ovesen T, Rusan M. A systematic review of phase II targeted therapy clinical trials in anaplastic thyroid cancer. Cancers (Basel). 2019;11(7). https://doi.org/10.3390/cancers11070943.

  30. Haymart MR, Banerjee M, Yin H, Worden F, Griggs JJ. Marginal treatment benefit in anaplastic thyroid cancer. Cancer. 2013;119(17):3133–9. https://doi.org/10.1002/cncr.28187.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wendler J, Kroiss M, Gast K, Kreissl MC, Allelein S, Lichtenauer U, et al. Clinical presentation, treatment and outcome of anaplastic thyroid carcinoma: results of a multicenter study in Germany. Eur J Endocrinol. 2016;175(6):521–9. https://doi.org/10.1530/EJE-16-0574.

    Article  CAS  PubMed  Google Scholar 

  32. Kebebew E, Greenspan FS, Clark OH, Woeber KA, McMillan A. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer. 2005;103(7):1330–5. https://doi.org/10.1002/cncr.20936.

    Article  PubMed  Google Scholar 

  33. Chen J, Tward JD, Shrieve DC, Hitchcock YJ. Surgery and radiotherapy improves survival in patients with anaplastic thyroid carcinoma: analysis of the surveillance, epidemiology, and end results 1983-2002. Am J Clin Oncol. 2008;31(5):460–4. https://doi.org/10.1097/COC.0b013e31816a61f3.

    Article  CAS  PubMed  Google Scholar 

  34. Akaishi J, Sugino K, Kitagawa W, Nagahama M, Kameyama K, Shimizu K, et al. Prognostic factors and treatment outcomes of 100 cases of anaplastic thyroid carcinoma. Thyroid. 2011;21(11):1183–9. https://doi.org/10.1089/thy.2010.0332.

    Article  PubMed  Google Scholar 

  35. Glaser SM, Mandish SF, Gill BS, et al. Anaplastic Thyroid Cancer (ATC): Prognostic Factors, Patterns of Care, and Overall Survival. Int J Radiat Oncol Biol Phys. 2016;94(4):950–1. https://doi.org/10.1016/j.ijrobp.2015.12.293.

    Article  Google Scholar 

  36. Sugitani I, Miyauchi A, Sugino K, Okamoto T, Yoshida A, Suzuki S. Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC research consortium of Japan cohort study of 677 patients. World J Surg. 2012;36(6):1247–54. https://doi.org/10.1007/s00268-012-1437-z.

    Article  PubMed  Google Scholar 

  37. Baek SK, Lee MC, Hah JH, Ahn SH, Son YI, Rho YS, et al. Role of surgery in the management of anaplastic thyroid carcinoma: Korean nationwide multicenter study of 329 patients with anaplastic thyroid carcinoma, 2000 to 2012. Head Neck. 2017;39(1):133–9. https://doi.org/10.1002/hed.24559.

    Article  PubMed  Google Scholar 

  38. Tashima L, Mitzner R, Durvesh S, Goldenberg D. Dyspnea as a prognostic factor in anaplastic thyroid carcinoma. Eur Arch Otorhinolaryngol. 2012;269(4):1251–5. https://doi.org/10.1007/s00405-011-1762-0.

    Article  PubMed  Google Scholar 

  39. Sugitani I, Kasai N, Fujimoto Y, Yanagisawa A. Prognostic factors and therapeutic strategy for anaplastic carcinoma of the thyroid. World J Surg. 2001;25(5):617–22. https://doi.org/10.1007/s002680020166.

    Article  CAS  PubMed  Google Scholar 

  40. Orita Y, Sugitani I, Amemiya T, Fujimoto Y. Prospective application of our novel prognostic index in the treatment of anaplastic thyroid carcinoma. Surgery. 2011;150(6):1212–9. https://doi.org/10.1016/j.surg.2011.09.005.

    Article  PubMed  Google Scholar 

  41. Sun C, Li C, Hu Z, Li X, He J, Song M, et al. Influence of risk grouping on therapeutic decisions in patients with anaplastic thyroid carcinoma. Eur Arch Otorhinolaryngol. 2015;272(4):985–93. https://doi.org/10.1007/s00405-014-2937-2.

    Article  PubMed  Google Scholar 

  42. Cabanillas ME, Williams MD, Gunn GB, Weitzman SP, Burke L, Busaidy NL, et al. Facilitating anaplastic thyroid cancer specialized treatment: a model for improving access to multidisciplinary care for patients with anaplastic thyroid cancer. Head Neck. 2017;39(7):1291–5. https://doi.org/10.1002/hed.24784.

    Article  PubMed  Google Scholar 

  43. Rao SN, Zafereo M, Dadu R, Busaidy NL, Hess K, Cote GJ, et al. Patterns of treatment failure in anaplastic thyroid carcinoma. Thyroid. 2017;27(5):672–81. https://doi.org/10.1089/thy.2016.0395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bhatia A, Rao A, Ang KK, Garden AS, Morrison WH, Rosenthal DI, et al. Anaplastic thyroid cancer: clinical outcomes with conformal radiotherapy. Head Neck. 2010;32(7):829–36. https://doi.org/10.1002/hed.21257.

    Article  PubMed  Google Scholar 

  45. Brignardello E, Palestini N, Felicetti F, Castiglione A, Piovesan A, Gallo M, et al. Early surgery and survival of patients with anaplastic thyroid carcinoma: analysis of a case series referred to a single institution between 1999 and 2012. Thyroid. 2014;24(11):1600–6. https://doi.org/10.1089/thy.2014.0004.

    Article  PubMed  Google Scholar 

  46. Hu S, Helman SN, Hanly E, Likhterov I. The role of surgery in anaplastic thyroid cancer: a systematic review. Am J Otolaryngol. 2017;38(3):337–50. https://doi.org/10.1016/j.amjoto.2017.02.005.

    Article  PubMed  Google Scholar 

  47. Corrigan KL, Williamson H, Elliott Range D, Niedzwiecki D, Brizel DM, Mowery YM. Treatment outcomes in anaplastic thyroid Cancer. J Thyroid Res. 2019;2019:8218949–11. https://doi.org/10.1155/2019/8218949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Prasongsook N, Kumar A, Chintakuntlawar AV, Foote RL, Kasperbauer J, Molina J, et al. Survival in response to multimodal therapy in anaplastic thyroid Cancer. J Clin Endocrinol Metab. 2017;102(12):4506–14. https://doi.org/10.1210/jc.2017-01180.

    Article  PubMed  Google Scholar 

  49. McIver B, Hay ID, Giuffrida DF, Dvorak CE, Grant CS, Thompson GB, et al. Anaplastic thyroid carcinoma: a 50-year experience at a single institution. Surgery. 2001;130(6):1028–34. https://doi.org/10.1067/msy.2001.118266.

    Article  CAS  PubMed  Google Scholar 

  50. Goffredo P, Thomas SM, Adam MA, Sosa JA, Roman SA. Impact of timeliness of resection and thyroidectomy margin status on survival for patients with anaplastic thyroid cancer: an analysis of 335 cases. Ann Surg Oncol. 2015;22(13):4166–74. https://doi.org/10.1245/s10434-015-4742-6.

    Article  PubMed  Google Scholar 

  51. Ito K, Hanamura T, Murayama K, Okada T, Watanabe T, Harada M, et al. Multimodality therapeutic outcomes in anaplastic thyroid carcinoma: improved survival in subgroups of patients with localized primary tumors. Head Neck. 2012;34(2):230–7. https://doi.org/10.1002/hed.21721.

    Article  PubMed  Google Scholar 

  52. Kwon J, Kim BH, Jung HW, Besic N, Sugitani I, Wu HG. The prognostic impacts of postoperative radiotherapy in the patients with resected anaplastic thyroid carcinoma: a systematic review and meta-analysis. Eur J Cancer. 2016;59:34–45. https://doi.org/10.1016/j.ejca.2016.02.015.

    Article  PubMed  Google Scholar 

  53. Pezzi TA, Mohamed ASR, Sheu T, Blanchard P, Sandulache VC, Lai SY, et al. Radiation therapy dose is associated with improved survival for unresected anaplastic thyroid carcinoma: outcomes from the National Cancer Data Base. Cancer. 2017;123(9):1653–61. https://doi.org/10.1002/cncr.30493 A detailed study and overview of radiation therapy and its use in patients with unresected anaplastic thyroid cancer.

    Article  PubMed  Google Scholar 

  54. De Crevoisier R, Baudin E, Bachelot A, Leboulleux S, Travagli JP, Caillou B, et al. Combined treatment of anaplastic thyroid carcinoma with surgery, chemotherapy, and hyperfractionated accelerated external radiotherapy. Int J Radiat Oncol Biol Phys. 2004;60(4):1137–43. https://doi.org/10.1016/j.ijrobp.2004.05.032.

    Article  PubMed  Google Scholar 

  55. Beckham TH, Romesser PB, Groen AH, Sabol C, Shaha AR, Sabra M, et al. Intensity-modulated radiation therapy with or without concurrent chemotherapy in nonanaplastic thyroid cancer with unresectable or gross residual disease. Thyroid. 2018;28:1180–9.

    Article  CAS  Google Scholar 

  56. Troch M, Koperek O, Scheuba C, Dieckmann K, Hoffmann M, Niederle B, et al. High efficacy of concomitant treatment of undifferentiated (anaplastic) thyroid cancer with radiation and docetaxel. J Clin Endocrinol Metab. 2010;95(9):E54–7. https://doi.org/10.1210/jc.2009-2827.

    Article  PubMed  Google Scholar 

  57. Foote RL, Molina JR, Kasperbauer JL, Lloyd RV, McIver B, Morris JC, et al. Enhanced survival in locoregionally confined anaplastic thyroid carcinoma: a single-institution experience using aggressive multimodal therapy. Thyroid. 2011;21(1):25–30. https://doi.org/10.1089/thy.2010.0220.

    Article  PubMed  Google Scholar 

  58. Nachalon Y, et al. Aggressive palliation and survival in anaplastic thyroid carcinoma. JAMA Otolaryngol Head Neck Surg. 2019;141(12):1128–32. https://doi.org/10.1001/jamaoto.2015.2332.

    Article  Google Scholar 

  59. Ito Y, Onoda N, Ito KI, Sugitani I, Takahashi S, Yamaguchi I, et al. Sorafenib in Japanese patients with locally advanced or metastatic medullary thyroid carcinoma and anaplastic thyroid carcinoma. Thyroid. 2017;27(9):1142–8. https://doi.org/10.1089/thy.2016.0621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gupta-Abramson V, Troxel AB, Nellore A, Puttaswamy K, Redlinger M, Ransone K, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol. 2008;26(29):4714–9. https://doi.org/10.1200/jco.2008.16.3279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kloos RT, Ringel MD, Knopp MV, Hall NC, King M, Stevens R, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 2009;27(10):1675–84. https://doi.org/10.1200/jco.2008.18.2717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bible KC, Suman VJ, Menefee ME, Smallridge RC, Molina JR, Maples WJ, et al. A multiinstitutional phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer. J Clin Endocrinol Metab. 2012;97:3179–84.

    Article  CAS  Google Scholar 

  63. Takahashi S, Kiyota N, Yamazaki T, Chayahara N, Nakano K, Inagaki L, et al. A phase II study of the safety and efficacy of lenvatinib in patients with advanced thyroid cancer. Future Oncol. 2019;15(7):717–26. https://doi.org/10.2217/fon-2018-0557.

    Article  CAS  PubMed  Google Scholar 

  64. Wirth LJ, Eigendorff E, Capdevila J, Paz-Ares LG, Lin C-C, Taylor MH et al. Phase I/II study of spartalizumab (PDR001), an anti-PD1 mAb, in patients with anaplastic thyroid cancer. 2018. https://doi.org/10.1200/JCO.2018.36.15_suppl.6024.

  65. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63(7):1454–7.

    CAS  PubMed  Google Scholar 

  66. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88(11):5399–404. https://doi.org/10.1210/jc.2003-030838.

    Article  CAS  PubMed  Google Scholar 

  67. Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, Nistal M, Santisteban P. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocr Relat Cancer. 2006;13(1):257–69. https://doi.org/10.1677/erc.1.01119.

    Article  CAS  PubMed  Google Scholar 

  68. Falchook GS, Millward M, Hong D, Naing A, Piha-Paul S, Waguespack SG, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid. 2015;25(1):71–7. https://doi.org/10.1089/thy.2014.0123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shah MH, Wei L, Wirth LJ, Daniels GA, Souza JAD, Timmers CD et al. Results of randomized phase II trial of dabrafenib versus dabrafenib plus trametinib in BRAF-mutated papillary thyroid carcinoma. 2017. https://doi.org/10.1200/JCO.2017.35.15_suppl.6022.

  70. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, et al. Dabrafenib and Trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid Cancer. J Clin Oncol. 2018;36(1):7–13. https://doi.org/10.1200/jco.2017.73.6785.

    Article  CAS  PubMed  Google Scholar 

  71. Wang JR, Zafereo ME, Dadu R, Ferrarotto R, Busaidy NL, Lu C, et al. Complete surgical resection following neoadjuvant dabrafenib plus trametinib in BRAF(V600E)-mutated anaplastic thyroid carcinoma. Thyroid. 2019;29(8):1036–43. https://doi.org/10.1089/thy.2019.0133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cabanillas ME, Ferrarotto R, Garden AS, Ahmed S, Busaidy NL, Dadu R, et al. Neoadjuvant BRAF- and immune-directed therapy for anaplastic thyroid carcinoma. Thyroid. 2018;28(7):945–51 Case series demonstrating that response to neoadjuvant targeted therapy and immunotherapy can result in a considerable response, allowing for surgical resection previously unresectable tumors.

    Article  Google Scholar 

  73. Cabanillas ME, Ryder M, Jimenez C. Targeted therapy for advanced thyroid cancer: kinase inhibitors and beyond. Endocr Rev. 2019;40(6):1573–604. https://doi.org/10.1210/er.2019-00007 This manuscript provides a comprehensive review of available treatment options for targeted therapy in thyroid cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Federman N, McDermott R. Larotrectinib, a highly selective tropomyosin receptor kinase (TRK) inhibitor for the treatment of TRK fusion cancer. Expert Rev Clin Pharmacol. 2019;12:1–9. https://doi.org/10.1080/17512433.2019.1661775.

    Article  CAS  Google Scholar 

  75. Saleh K, Khalifeh-Saleh N, Kourie HR. TRK inhibitors: toward an era of agnostic targeted therapies in oncology. Pharmacogenomics. 2019;20(13):927–9. https://doi.org/10.2217/pgs-2019-0064.

    Article  CAS  PubMed  Google Scholar 

  76. Demetri GD, Paz-Ares L, Farago AF, et al. LBA4Efficacy and safety of entrectinib in patients with NTRK fusion-positive tumours: Pooled analysis of STARTRK-2, STARTRK-1, and ALKA-372-001. Ann Oncol. 2019;29(suppl_9). https://doi.org/10.1093/annonc/mdy483.003.

  77. Kheder ES, Hong DS. Emerging targeted therapy for tumors with NTRK fusion proteins. Clin Cancer Res. 2018;24(23):5807–14. https://doi.org/10.1158/1078-0432.ccr-18-1156.

    Article  CAS  PubMed  Google Scholar 

  78. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of Larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9. https://doi.org/10.1056/NEJMoa1714448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lassen UN, Albert CM, Kummar S, et al. 409OLarotrectinib efficacy and safety in TRK fusion cancer: An expanded clinical dataset showing consistency in an age and tumor agnostic approach. Ann Oncol. 2019;29(suppl_8). https://doi.org/10.1093/annonc/mdy279.397.

  80. Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017;7(4):400–9. https://doi.org/10.1158/2159-8290.cd-16-1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Paquette M, El-Houjeiri L, Pause A. mTOR pathways in cancer and autophagy. Cancers. 2018;10(1):18. https://doi.org/10.3390/cancers10010018.

    Article  CAS  PubMed Central  Google Scholar 

  82. Murugan AK, Liu R, Xing M. Identification and characterization of two novel oncogenic mTOR mutations. Oncogene. 2019;38(26):5211–26. https://doi.org/10.1038/s41388-019-0787-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hanna GJ, Busaidy NL, Chau NG, Wirth LJ, Barletta JA, Calles A, et al. Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: a phase II study. Clin Cancer Res. 2018;24(7):1546–53. https://doi.org/10.1158/1078-0432.ccr-17-2297.

    Article  CAS  PubMed  Google Scholar 

  84. Schneider TC, de Wit D, Links TP, van Erp NP, van der Hoeven JJ, Gelderblom H, et al. Beneficial effects of the mTOR inhibitor everolimus in patients with advanced medullary thyroid carcinoma: subgroup results of a phase II trial. Int J Endocrinol. 2015;2015:348124–8. https://doi.org/10.1155/2015/348124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lim SM, Chang H, Yoon MJ, Hong YK, Kim H, Chung WY, et al. A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann Oncol. 2013;24(12):3089–94. https://doi.org/10.1093/annonc/mdt379.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Electron Kebebew MD.

Ethics declarations

Conflict of Interest

None of the authors has any potential conflicts of interest to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Head and Neck Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alobuia, W., Gillis, A. & Kebebew, E. Contemporary Management of Anaplastic Thyroid Cancer. Curr. Treat. Options in Oncol. 21, 78 (2020). https://doi.org/10.1007/s11864-020-00776-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-020-00776-2

Keywords

Navigation