Skip to main content
Log in

A T1 theorem for general Calderón—Zygmund operators with comparable doubling weights, and optimal cancellation conditions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We begin an investigation into extending the T1 theorem of David and Journé, and the corresponding optimal cancellation conditions of Stein, to more general pairs of distinct doubling weights. For example, when 0 < α < n, and σ and ω are A weights satisfying the one-tailed Muckenhoupt conditions, and Kα is a smooth fractional CZ kernel, we show there exists a bounded operator Tα: L2(σ) → L2(ω) associated with Kα if and only if there is a positive constant \({\mathfrak{A}_{{K^\alpha }}}(\sigma ,\omega )\) so that

$$\matrix{ \hfill {\int_{\left\| {x - {x_0}} \right\| < N} {{{\left| {\int_{\varepsilon < \left\| {x - y} \right\| < N} {{K^\alpha }(x,y)d\sigma (y)} } \right|}^2}d\omega (x) \le {\mathfrak{A}_{{K^\alpha }}}(\sigma ,\omega )\int_{\left\| {{x_0} - y} \right\| < N} {d\sigma (y),} } } \cr \hfill {{\rm{for}}\,{\rm{all}}\,0 < \varepsilon < N\,{\rm{and}}\,{x_0} \in {\mathbb{R}^n},} \cr } $$

where ‖y‖ ≡ max1≤knyk∣, along with a dual inequality. More generally this holds for measures σ and ω comparable in the sense of Coifman and Fefferman that satisfy a fractional Ask{∞/α} condition.

These results are deduced from the following theorem of T1 type, namely that if σ and ω are doubling measures, comparable in the sense of Coifman and Fefferman, and satisfying one-tailed Muckenhoupt conditions, then Tα: L2(σ) → L2(ω) if and only if the dual pair of testing conditions hold, as well as a strong form of the weak boundedness property,

$$\left| {\int_F {\left( {{T^\alpha }{{\bf{1}}_E}} \right)d\omega } } \right| \le {\cal B}{\cal J}{\cal C}{{\cal T}_{{T^\alpha }}}(\sigma ,\omega )\sqrt {{{\left| {{Q_\sigma }} \right|}_\sigma }{{\left| {{Q_\sigma }} \right|}_{\omega ,}}} \,\,\,\,{\rm{for}}\,{\rm{all}}\,{\rm{cubes}}\,Q \subset {\mathbb{R}^n},$$

where \({\cal B}{\cal J}{\cal C}{{\cal T}_{{T^\alpha }}}(\sigma ,\omega )\) is a positive constant called the bilinear cube/indicator testing constant. The comparability of measures and the bilinear cube/indicator testing condition can both be dropped if the stronger indicator/cube testing conditions are assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer, Berlin—Heidelberg, 1999.

    MATH  Google Scholar 

  2. D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19–42.

    MathSciNet  MATH  Google Scholar 

  3. M. E. Cejasa, K. Li, C. Pérez and I. P. Rivera-Ríos, Vector-valued operators, optimal weighted estimates and the Cp condition, arXiv:1712.05781 [math.CA].

  4. R. R. Coifman and C. L. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. David and J.-L. Journé, A boundedness criterion for generalized Calderón—Zygmund operators, Ann. of Math. (2) 120 (1984), 371–397.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Garnett, R. Killip and R. Schul, A doubling measure ondcan charge a rectifiable curve, Proc. Amer. Math. Soc. 138 (2010), 1673–1679.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Grigoriadis and M. Paparizos, Counterexample to the off-testing condition in two dimensions, arXiv:2004.06207 [math.CA].

  8. R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Hytönen, The sharp weighted bound for general Calderón—Zygmund operators, Ann. of Math. (2) 175 (2012), 1473–1506.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Hytönen, The A2 theorem: remarks and complements, in Harmonic Analysis and Partial Differential Equations, American Mathematical Society, Providence, RI, 2014, pp. 91–106.

    Chapter  MATH  Google Scholar 

  11. T. Hytönen, The two weight inequality for the Hilbert transform with general measures, Proc. Lond. Math. Soc. (3) 117 (2018), 483–526.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Hytönen, C. Perez, S. Treil and A. Volberg, Sharp weighted estimates for dyadic shifts and the A2conjecture, J. Reine Angew. Math. 687 (2014), 43–86.

    MathSciNet  MATH  Google Scholar 

  13. M. T. Lacey, Two weight inequality for the Hilbert transform: A real variable characterization, II, Duke Math. J. 163 (2014), 2821–2840.

    MathSciNet  MATH  Google Scholar 

  14. M. T. Lacey, The two weight inequality for the Hilbert transform: a primer, in Harmonic Analysis, Partial Differential Equations, Banach Spaces and Operator Theory. Vol. 2, Springer, Cham, 2017, pp. 11–84

    Google Scholar 

  15. M. T. Lacey and K. Li, Two weight norm inequalities for the g function, Math. Res. Lett. 21 (2014), 521–536.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. T. Lacey, S. Petermichl and M. C. Reguera, Sharp A2inequality for Haar shift operators, Math. Ann. 348 (2010), 127–141.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. T. Lacey, E. T. Sawyer and I. Uriarte-Tuero, A characterization of two weight norm inequalities for maximal singular integrals with one doubling measure, Anal. PDE 5 (2012), 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. T. Lacey, E. T. Sawyer and I. Uriarte-Tuero, Two weight inequalities for discrete positive operators, arXiv:0911.3437 [math.CA].

  19. M. T. Lacey, E. T. Sawyer, C.-Y. Shen and I. Uriarte-Tuero, Two weight inequality for the Hilbert transform: A real variable characterization I, Duke Math. J. 163 (2014), 2795–2820.

    MathSciNet  MATH  Google Scholar 

  20. M. T. Lacey, E. T. Sawyer, C.-Y. Shen and I. Uriarte-Tuero, Two weight inequality for the Hilbert transform: A real variable characterization, I, arXiv:1201.4319v9 [math.CA].

  21. M. T. Lacey, E. T. Sawyer, C.-Y. Shen, I. Uriarte-Tuero and B. D. Wick, Two weight inequalities for the Cauchy transform fromto+, arXiv:1310.4820 [math.CV].

  22. M. T. Lacey and B. D. Wick, Two weight inequalities for Riesz transforms: uniformly full dimension weights, arXiv:1312.6163 [math.CA].

  23. A. K. Lerner, A characterization of the weighted weak type Coifman—Fefferman and Fefferman—Stein Inequalities, Math. Ann. 378 (2020), 425–446.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Liaw and S. Treil, Regularizations of general singular integral operators, Rev. Mat. Iberoam. 29 (2013), 53–74.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Muckenhoupt, Norm inequalities relating the Hilbert transform to the Hardy—Littlewood maximal function, in Functional Analysis and Approximation (Oberwolfach, 1980), Birkhäuser, Basel—Boston, MA, 1981, pp. 219–23.

    Chapter  Google Scholar 

  26. B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274.

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Nazarov, A counterexample to a problem of Sarason on boundedness of the product of two Toeplitz operators, preprint, 1996.

  28. F. Nazarov, S. Treil and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), 909–928.

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón—Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Not. IMRN 1998 (1998), 463–487

    Article  MATH  Google Scholar 

  30. F. Nazarov, S. Treil and A. Volberg, Accretive system Tb-theorems on nonhomogeneous spaces, Duke Math. J. 113 (2002), 259–312.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Nazarov, S. Treil and A. Volberg, Two weight estimate for the Hilbert transform and corona decomposition for non-doubling measures, arxiv:1003.1596 [math.AP].

  32. F. Nazarov and A. Volberg, Bellman function, two-weighted Hilbert transform, and embeddings of the model spaces Kθ, J. Anal. Math. 87 (2002), 385–414.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Peérez, S. Treil and A. Volberg, On A2 conjecture and corona decomposition of weights, arXiv:1006.2630 [math.AP].

  34. R. Rahm, E. T. Sawyer and B. D. Wick, Weighted Alpert wavelets, J. Fourier Anal. Appl. 27 (2021), Article no. 1

  35. E. T. Sawyer, Energy conditions and twisted localizations of operators, arXiv:1801.03706 [math.CA].

  36. E. T. Sawyer, Weighted norm inequalities for fractional maximal operators, in 1980 Seminar on Harmonic Analysis, American Mathematical Society, Providence, RI, 1981, pp. 283–309.

    Google Scholar 

  37. E. T. Sawyer, Norm inequalities relating singular integrals and the maximal function, Studia Math. 75 (1983), 253–263.

    Article  MathSciNet  MATH  Google Scholar 

  38. E. T. Sawyer, A T1 theorem with BICT for fractional singular integrals with doubling measures: cancellation conditions for Calderón—Zygmund operators, arXiv:1906.05602 [math.CA].

  39. E. T. Sawyer, A restricted weak type inequality with application to a Tp theorem and cancellation conditions for CZO’s, arXiv:1907.07571 [math.CA].

  40. E. T. Sawyer, T1 implies Tp polynomial testing: optimal cancellation conditions for CZO’s, arXiv:1907.10734 [math.CA].

  41. E. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc. 308 (1988), 533–545.

    Article  MathSciNet  MATH  Google Scholar 

  42. E. T. Sawyer, C.-Y. Shen and I. Uriarte-Tuero, A note on failure of energy reversal for classical fractional singular integrals, Int. Math. Res. Not. IMRN 2015 (2015), 9888–9920.

    Article  MathSciNet  MATH  Google Scholar 

  43. E. T. Sawyer, C.-Y. Shen I. Uriarte-Tuero, A two weight theorem for α-fractional singular integrals with an energy side condition, Rev. Mat. Iberoam. 32 (2016), 79–174.

    Article  MathSciNet  MATH  Google Scholar 

  44. E. T. Sawyer, C.-Y. Shen and I. Uriarte-Tuero, A two weight fractional singular integral theorem with side conditions, energy and k-energy dispersed, in Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory, Vol. 2, Springer, Cham, 2017, pp. 305–372.

    MATH  Google Scholar 

  45. E. T. Sawyer, C.-Y. Shen and I. Uriarte-Tuero, A good-X lemma, two weight T1 theorems without weak boundedness, and a two weight accretive global Tb theorem, in Harmonic Analysis, Partial Differential Equations and Applications, Birkhäuser, Cham, 2017, pp. 125–164.

    Chapter  MATH  Google Scholar 

  46. E. T. Sawyer, C.-Y. Shen and I. Uriarte-Tuero, Energy counterexamples in two weight Calderon—Zygmund theory, Int. Math. Res. Not. IMRN 2021 (2021), 16271–16356.

    Article  MathSciNet  MATH  Google Scholar 

  47. E. T. Sawyer, C.-Y. Shen and I. Uriarte-Tuero, A two weight local Tb theorem for the Hilbert transform, Rev. Mat. Iberoam. 37 (2021), 415–641.

    Article  MathSciNet  MATH  Google Scholar 

  48. E. Sawyer and I. Uriarte-Tuero, Control of the bilinear indicator cube testing property, Ann. Fenn. Math. 46 (2021), 1105–1122.

    Article  MathSciNet  MATH  Google Scholar 

  49. E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813–874.

    Article  MathSciNet  MATH  Google Scholar 

  50. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  51. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  52. E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159–172.

    Article  MathSciNet  MATH  Google Scholar 

  53. E. M. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971.

    MATH  Google Scholar 

  54. H. Tanaka, A characterization of two-weight trace inequalities for positive dyadic operators in the upper triangle case, Potential Anal. 41 (2014), 487–499.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We thank the referee for a number of corrections and simplifications of arguments that greatly contribute to the readability of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric T. Sawyer.

Additional information

In memory of Professor Elias M. Stein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawyer, E.T. A T1 theorem for general Calderón—Zygmund operators with comparable doubling weights, and optimal cancellation conditions. JAMA 146, 205–297 (2022). https://doi.org/10.1007/s11854-022-0198-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0198-3

Navigation