Skip to main content
Log in

Singular integrals on C1,α regular curves in Carnot groups

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let \(\mathbb{G}\) be any Carnot group. We prove that if a convolution type singular integral associated with a 1-dimensional Calderón—Zygmund kernel is L2-bounded on horizontal lines, with uniform bounds, then it is bounded in Lp, p ∈ (1, ∞), on any compact C1, α, α ∈ (0, 1], regular curve in \(\mathbb{G}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer, Berlin, 2007.

    MATH  Google Scholar 

  2. A. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Natl. Acad. Sci. USA 74 (1977), 1324–1327.

    Article  MathSciNet  Google Scholar 

  3. V. Chousionis, K. Fässler and T. Orponen, Boundedness of singular integrals on C1, αintrinsic graphs in the Heisenberg group, Adv. Math. 354 (2019), 106745.

    Article  MathSciNet  Google Scholar 

  4. V. Chousionis and S. Li, Nonnegative kernels and 1-rectifiability in the Heisenberg group, Anal. PDE 10 (2017), 1407–1428.

    Article  MathSciNet  Google Scholar 

  5. V. Chousionis, S. Li and S. Zimmerman, The traveling salesman theorem in Carnot groups, Calc. Var. Partial Differential Equations 58 (2019), Article no. 14.

  6. V. Chousionis, V. Magnani and J. T. Tyson, Removable sets for Lipschitz harmonic functions on Carnot groups, Calc. Var. Partial Differential Equations 53 (2015), 755–780.

    Article  MathSciNet  Google Scholar 

  7. V. Chousionis and P. Mattila, Singular integrals on Ahlfors—David regular subsets of the Heisenberg group, J. Geom. Anal. 21 (2011), 56–77.

    Article  MathSciNet  Google Scholar 

  8. V. Chousionis and P. Mattila, Singular integrals on self-similar sets and removability for Lipschitz harmonic functions in Heisenberg groups, J. Reine Angew. Math. 691 (2014), 29–60.

    MathSciNet  MATH  Google Scholar 

  9. M. Christ, Lectures on Singular Integral Operators, American Mathematical Society, Providence, RI, 1990.

    MATH  Google Scholar 

  10. M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601–628.

    Article  MathSciNet  Google Scholar 

  11. R. R. Coifman, A. McIntosh and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L2pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), 361–387.

    Article  MathSciNet  Google Scholar 

  12. R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces homogènes, Springer, Berlin—New York, 1971.

    Book  Google Scholar 

  13. G. David, Wavelets and Singular Integrals on Curves and Surfaces, Springer, Berlin—Heidelberg, 1991.

    Book  Google Scholar 

  14. G. David and J.-L. Journé, A boundedness criterion for generalized Calderón—Zygmundoperators, Ann. of Math. (2) 120 (1984), 371–397.

    Article  MathSciNet  Google Scholar 

  15. G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, American Mathematical Society, Providence, RI, 1993.

    Book  Google Scholar 

  16. E. B. Dynkin, Calculation of the coefficients in the Campbell—Hausdorff formula, Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 323–326.

    MathSciNet  Google Scholar 

  17. K. Fässler and T. Orponen, Riesz transform and vertical oscillation in the Heisenberg group, arXiv:1810.13122 [math.CA].

  18. K. Fässler and T. Orponen, Singular integrals on regular curves in the Heisenberg group, J. Math. Pures Appl. (9) 153 (2021), 30–113.

    Article  MathSciNet  Google Scholar 

  19. S. Fernando, The T1 Theorem in Metric Spaces, Undergraduate honors thesis, University of Connecticut, Storrs, CT, 2017.

    Google Scholar 

  20. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982.

    MATH  Google Scholar 

  21. L. Grafakos, Classical Fourier Analysis, Springer, New York, 2014.

    MATH  Google Scholar 

  22. Y. Guivarc’h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333–379.

    Article  MathSciNet  Google Scholar 

  23. P. Hajłasz, Sobolev spaces on metric-measure spaces, in Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), American Mathematical Society, Providence, RI, 2003, pp. 173–218.

    MATH  Google Scholar 

  24. J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson, Sobolev spaces on metric measure spaces, Cambridge University Press, Cambridge, 2015.

    Book  Google Scholar 

  25. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995.

    Book  Google Scholar 

  26. P. Mattila, M. S. Melnikov and J. Verdera, The Cauchy integral, analytic capacity, and uniform rectifiability, Ann. of Math. (2) 144 (1996), 127–136.

    Article  MathSciNet  Google Scholar 

  27. R. Monti, Distances, Boundaries and Surface Measures in Carnot—Carathèodory Spaces, PhD Thesis, Trento University, Trento, 2001.

    MATH  Google Scholar 

  28. F. Nazarov, X. Tolsa and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón—Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices IMRN 9 (1998), 463–487.

    Article  Google Scholar 

  29. F. Nazarov, X. Tolsa and A. Volberg, On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1, Acta Math. 213 (2014), 237–321.

    Article  MathSciNet  Google Scholar 

  30. F. Nazarov, X. Tolsa and A. Volberg, The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions, Publ. Mat. 58 (2014), 517–532.

    Article  MathSciNet  Google Scholar 

  31. P. Pansu, Métriques de Carnot—Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), 1–60.

    Article  MathSciNet  Google Scholar 

  32. E. M. Stein and T. S. Murphy, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

    Google Scholar 

  33. X. Tolsa, Analytic Capacity, The Cauchy Transform, and Non-Homogeneous Calderón—Zygmund Theory, Birkhäuser/Springer, Cham, 2014.

    Book  Google Scholar 

  34. X. Tolsa, The T1 Theorem, https://mat.uab.es/∼xtolsa/t1.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Chousionis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chousionis, V., Li, S. & Zimmerman, S. Singular integrals on C1,α regular curves in Carnot groups. JAMA 146, 299–326 (2022). https://doi.org/10.1007/s11854-021-0194-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-021-0194-z

Navigation