Skip to main content

Advertisement

Log in

Doublecortin-like kinase 3 (DCLK3) is associated with bad clinical outcome of patients with gastric cancer and regulates the ferroptosis and mitochondria function in vitro and in vivo

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

Doublecortin-like kinase 3 (DCLK3), a member of tubulin superfamily, has been proved to be closely associated with the pathogenesis of numerous human tumors. However, the expression pattern and regulatory mechanisms of DCLK3 in gastric cancer (GC) remain unknown.

Materials and methods

DCLK3 expression in GC cells was assessed by RT-qPCR and western blotting. The correlation between DCLK3 levels and the overall survival of GC patients was assessed via TCGA, ACLBI, and Kaplan–Meier plotter databases. Additionally, key proteins (TCF4) involved in the regulation of DCLK3 on GC progression were screened by ACLBI database. Cell proliferation, ferroptotic cell death, and oxidative stress markers were measured by EdU staining, immunofluorescence, ELISA, and western blotting assays.

Results

DCLK3 was upregulated in GC, and high DCLK3 expression was significantly associated with poor survival of GC patients. Here, DCLK3 knockdown reduced GC cell proliferation, induced ferroptotic cell death, and exacerbated oxidative stress level. Logistic regression analysis showed that TCF4 was an independent prognostic indicator of GC. Mechanistically, DCLK3 promoted TCF4 expression and subsequently upregulated the expression of TCF4 downstream target genes (c-Myc and Cyclin D1). Furthermore, DCLK3 overexpression enhanced GC cell proliferation, but mitigating ferroptotic cell death and oxidative stress. The regulatory mechanism may involve the upregulation of TCF4, c-Myc, and cyclin D1.

Conclusions

Our research suggests that DCLK3 modulates the levels of iron and reactive oxygen and may involve regulation of TCF4 pathway, thereby promoting the GC cell growth, indicating that DCLK3 may use as a prognostic marker and therapeutic target for GC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this article.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Kumar S, Metz DC, Ellenberg S et al (2020) Risk factors and incidence of gastric cancer after detection of Helicobacter pylori infection: a large cohort study. Gastroenterology 158(3):527–536. https://doi.org/10.1053/j.gastro.2019.10.019

    Article  CAS  PubMed  Google Scholar 

  3. Zhang X, Huang Z, Xie Z et al (2020) Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol Med 160(20):552–565. https://doi.org/10.1016/j.freeradbiomed.2020.08.029

    Article  CAS  PubMed  Google Scholar 

  4. Chen X, Kang R, Kroemer G et al (2021) Organelle-specific regulation of ferroptosis. Cell Death Differ 28(10):2843–2856. https://doi.org/10.1038/s41418-021-00859-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Yu C, Kang R et al (2021) Cellular degradation systems in ferroptosis. Cell Death Differ 28(4):1135–1148. https://doi.org/10.1038/s41418-020-00728-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hassannia B, Van Coillie S, Vanden BT (2021) Ferroptosis: biological rust of lipid membranes. Antioxid Redox Signal 35(6):487–509. https://doi.org/10.1089/ars.2020.8175

    Article  CAS  PubMed  Google Scholar 

  7. Yu H, Guo P, Xie X et al (2017) Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med 21(4):648–657. https://doi.org/10.1111/jcmm.13008

    Article  CAS  PubMed  Google Scholar 

  8. Xia X, Fan X, Zhao M, Zhu P (2019) The relationship between ferroptosis and tumors: a novel landscape for therapeutic approach. Curr Gene Ther 19(2):117–124. https://doi.org/10.2174/1566523219666190628152137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma S, Dielschneider RF, Henson ES et al (2017) Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells. PLoS One 12(8):e0182921. https://doi.org/10.1371/journal.pone.0182921

  10. Fonseca-Nunes A, Agudo A, Aranda N et al (2015) Body iron status and gastric cancer risk in the EURGAST study. Int J Cancer 137(12):2904–2914. https://doi.org/10.1002/ijc.29669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sakaguchi M, Hisamori S, Oshima N et al (2016) miR-137 regulates the tumorigenicity of colon cancer stem cells through the inhibition of DCLK1. Mol Cancer Res 14(4):354–362. https://doi.org/10.1158/1541-7786

    Article  CAS  PubMed  Google Scholar 

  12. Shan C, Fei F, Li F et al (2017) miR-448 is a novel prognostic factor of lung squamous cell carcinoma and regulates cells growth and metastasis by targeting DCLK1. Biomed Pharmacother 89:1227–1234. https://doi.org/10.1016/j.biopha.2017.02.017

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Wang S, Zhou J, Qian Q (2018) miR-424-5p regulates cell proliferation, migration and invasion by targeting doublecortin-like kinase 1 in basal-like breast cancer. Biomed Pharmacother 102:147–152. https://doi.org/10.1016/j.biopha.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  14. Galvan L, Francelle L, Gaillard MC et al (2018) The striatal kinase DCLK3 produces neuroprotection against mutant huntingtin. Brain 141(5):1434–1454. https://doi.org/10.1093/brain/awy057

    Article  PubMed  PubMed Central  Google Scholar 

  15. De de Longprez Longprez L (2018) Etude du rôle de la protéine kinase DCLK3 dans les mécanismes de neurodégénérescence dans la maladie de Huntington. Université Paris Saclay (COmUE)

  16. Zhao Y, Zhou H, Shen J et al (2021) MiR-1236–3p inhibits the proliferation, invasion, and migration of colon cancer cells and hinders epithelial-mesenchymal transition by targeting DCLK3. Front Oncol 11:688882. https://doi.org/10.3389/fonc.2021.688882

  17. Liu NQ, Ter Huurne M, Nguyen LN et al (2017) The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression. Nat commun 8(1):14418. https://doi.org/10.1038/ncomms14418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eusebi LH, Telese A, Marasco G et al (2020) Gastric cancer prevention strategies: a global perspective. J Gastroenterol Hepatol 35(9):1495–1502. https://doi.org/10.1111/jgh.15037

    Article  PubMed  Google Scholar 

  19. Digklia A, Wagner AD (2016) Advanced gastric cancer: current treatment landscape and future perspectives. World J Gastroenterol 22(8):2403–2413. https://doi.org/10.3748/wjg.v22.i8.2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song Z, Wu Y, Yang J et al (2017) Progress in the treatment of advanced gastric cancer. Tumor Biol 39(7):1010428317714626. https://doi.org/10.1177/1010428317714626

    Article  CAS  Google Scholar 

  21. Chandrakesan P, Yao J, Qu D et al (2017) Dclk1, a tumor stem cell marker, regulates pro-survival signaling and self-renewal of intestinal tumor cells. Mol Cancer 16(1):1–14. https://doi.org/10.1186/s12943-017-0594-y

    Article  CAS  Google Scholar 

  22. Weygant N, Qu D, Berry WL et al (2014) Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1. Mol Cancer 13(1):1–14. https://doi.org/10.1186/1476-4598-13-103

    Article  CAS  Google Scholar 

  23. Chandrakesan P, Weygant N, May R et al (2014) DCLK1 facilitates intestinal tumor growth via enhancing pluripotency and epithelial mesenchymal transition. Oncotarget 5(19):9269–9280. https://doi.org/10.18632/oncotarget.2393

    Article  PubMed  PubMed Central  Google Scholar 

  24. Carli ALE, Afshar-Sterle S, Rai A et al (2021) Cancer stem cell marker DCLK1 reprograms small extracellular vesicles toward migratory phenotype in gastric cancer cells. Proteomics 21(13–14):e2000098. https://doi.org/10.1002/pmic.202000098

  25. Liu ZQ, He WF, Wu YJ et al (2020) LncRNA SNHG1 promotes EMT process in gastric cancer cells through regulation of the miR-15b/DCLK1/Notch1 axis. BMC Gastroenterol 20(1):1–10. https://doi.org/10.1186/s12876-020-01272-5

    Article  CAS  Google Scholar 

  26. Kerjan G, Koizumi H, Han EB et al (2009) Mice lacking doublecortin and doublecortin-like kinase 2 display altered hippocampal neuronal maturation and spontaneous seizures. Proc Natl Acad Sci USA 106(16):6766–6771. https://doi.org/10.1073/pnas.0812687106

    Article  PubMed  PubMed Central  Google Scholar 

  27. He YL, Dai XQ, Li S et al (2022) Doublecortin-like kinase 2 promotes breast cancer cell invasion and metastasis. Clin Transl Oncol 25(4):1–12. https://doi.org/10.1007/s12094-022-03018-z

    Article  CAS  Google Scholar 

  28. Liu NQ, Ter Huurne M, Nguyen LN et al (2017) The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression. Nat Commun 8(1):1–10. https://doi.org/10.1038/ncomms14418

    Article  CAS  Google Scholar 

  29. Ferlay J, Colombet M, Soerjomataram I et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953. https://doi.org/10.1002/ijc.31937

    Article  CAS  PubMed  Google Scholar 

  30. Hou W, Xie Y, Song X et al (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8):1425–1428. https://doi.org/10.1080/15548627.2016.1187366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen X, Yu C, Kang R, Tang DL (2020) Iron metabolism in ferroptosis. Front Cell Dev Biol 8:590226. https://doi.org/10.3389/fcell.2020.590226

  32. Ye Z, Liu W, Zhuo Q et al (2020) Ferroptosis: final destination for cancer? Cell Prolif 53(3):e12761. https://doi.org/10.1111/cpr.12761

  33. Hao S, Yu J, He W et al (2017) Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia 19(12):1022–1032. https://doi.org/10.1016/j.neo.2017.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu X, Miao J, Zhang M et al (2018) miRNA-103a-3p promotes human gastric cancer cell proliferation by targeting and suppressing ATF7 in vitro. Mol Cells 41(5):390–400. https://doi.org/10.14348/molcells.2018.2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li C, Tian Y, Liang Y, Li QC (2020) Circ_0008035 contributes to cell proliferation and inhibits apoptosis and ferroptosis in gastric cancer via miR-599/EIF4A1 axis. Cancer Cell Int 20(1):1–15. https://doi.org/10.1186/s12935-021-02122-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baj J, Korona-Głowniak I, Forma A et al (2020) Mechanisms of the epithelial-mesenchymal transition and tumor microenvironment in Helicobacter pylori-induced gastric cancer. Cells 9(4):1055. https://doi.org/10.3390/cells9041055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamaji Y, Hirata Y (2020) Treatment for Helicobacter pylori appears to reduce the incidence of gastric cancer: eradication effect or screening effect? Gut 69(3):605–606. https://doi.org/10.1136/gutjnl-2018-318206

    Article  PubMed  Google Scholar 

  38. Chu B, Kon N, Chen D et al (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21(5):579–591. https://doi.org/10.1038/s41556-019-0305-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26. https://doi.org/10.1016/j.devcel.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Daniels DL, Weis WI (2005) β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 12(4):364–371. https://doi.org/10.1038/nsmb912

    Article  CAS  PubMed  Google Scholar 

  41. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398. https://doi.org/10.1038/nrc2389

    Article  CAS  PubMed  Google Scholar 

  42. He MQ, Wan JF, Zeng HF et al (2021) miR-133a-5p suppresses gastric cancer through TCF4 down-regulation. J Gastrointest Oncol 12(3):1007–1019. https://doi.org/10.21037/jgo-20-418

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhuang K, Yan Y, Zhang X et al (2016) Gastrin promotes the metastasis of gastric carcinoma through the β-catenin/TCF-4 pathway. Oncol Rep 36(3):1369–1376. https://doi.org/10.3892/or.2016.4943

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Zheng L, Shang W et al (2022) Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ 29(11):2190–2202. https://doi.org/10.1038/s41418-022-01008-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region (grant no. 2022QN08015) and the Inner Mongolia Autonomous Region Priority Academic Science and Technology Research Projects (grant no. NJZY22051 and NJZZ22074).

Author information

Authors and Affiliations

Authors

Contributions

Zhi Q Dong made substantial contributions to the conception and design of the present study. Jie Cheng and Yu C Tang designed the research; Jie Cheng, Yu C Tang, Yuan Dong, Rui L Qin, and Zhi Q Dong performed the research; Jie Cheng and Yu C Tang analyzed the data and wrote the paper.

Corresponding author

Correspondence to Zhi Q. Dong.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Tang, Y.C., Dong, Y. et al. Doublecortin-like kinase 3 (DCLK3) is associated with bad clinical outcome of patients with gastric cancer and regulates the ferroptosis and mitochondria function in vitro and in vivo. Ir J Med Sci 193, 35–43 (2024). https://doi.org/10.1007/s11845-023-03430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-023-03430-6

Keywords

Navigation