Skip to main content
Log in

Effect of Temperature on the Oxidation Behavior of Al and Ti in Inconel® 718 Alloy by ESR Slag with Different Amounts of CaO

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

It is necessary to reduce the amount of CaF2 in the electroslag remelting (ESR) slag because it causes a high specific energy consumption and several environmental problems. Laboratory-scale experiments were performed to study the effect of temperature on the oxidation behavior of Al and Ti in Inconel® 718 alloy by the CaF2-CaO-Al2O3-MgO-TiO2 slag containing different amounts of CaO. The oxidation loss of Al in the nickel-based alloy can be restrained by increasing the amount of CaO up to about 10 wt.% in the slag at 1873 K. However, an excessive amount of CaO in the slag will result in the oxidation of Ti when TiO2 content is less than 15 wt.%. The slag containing 35 wt.% CaO and 15 wt.% TiO2 can maintain a homogeneous distribution of Al and Ti in the remelted ingot in the ESR process. The corresponding usage amount of CaF2 was decreased, which was beneficial for decreasing specific energy consumption and fluoride pollution during the ESR process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Hasanbeigi, W. Morrow, J. Sathaye, E. Masanet, and T. Xu, Energy 50, 315 https://doi.org/10.1016/j.energy.2012.10.062 (2013).

    Article  Google Scholar 

  2. A. Mitchell, J. Vac. Sci. Technol. 7, S63 https://doi.org/10.1116/1.1315924 (1970).

    Article  Google Scholar 

  3. B. Hernandez-Morales, and A. Mitchell, Ironmak. Steelmak. 26, 423 https://doi.org/10.1179/030192399677275 (2013).

    Article  Google Scholar 

  4. B. Lee, and I. Sohn, JOM 66, 1581 https://doi.org/10.1007/s11837-014-1092-y (2014).

    Article  Google Scholar 

  5. L.K. Liang, H. Yang, and Z.W. Guo, J. Northeast Univ. Technol. 14, 171. (1993).

    Google Scholar 

  6. S. Siitonen, M. Tuomaala, and P. Ahtila, Energy Policy 38, 2477 https://doi.org/10.1016/j.enpol.2009.12.042 (2010).

    Article  Google Scholar 

  7. Z.B. Li, Electroslag Metallurgy Theory and Practice (Metallurgical Industry Press, Beijing, 2010), pp 79–149.

    Google Scholar 

  8. K. Narita, T. Onoye, T. Ishii, and T. Kusamichi, Tetsu-to-Hagane 64, 1568 https://doi.org/10.2355/tetsutohagane1955.64.10_1568 (1978).

    Article  Google Scholar 

  9. Y. Dong, Z. Jiang, Y. Cao, D. Hou, L. Liang, and J. Duan, ISIJ Int. 55, 904 https://doi.org/10.2355/isijinternational.55.904 (2015).

    Article  Google Scholar 

  10. Z.H. Jiang, and X.W. Jiang, J. Northeast Inst. Technol. 12, 188. (1991).

    Google Scholar 

  11. S.C. Duan, and H.-J. Guo, Steel Res. Int. https://doi.org/10.1002/srin.201900634 (2020).

    Article  Google Scholar 

  12. H. Shvei and S. Mista, The Experience of the “Huta Beldon” Steel Mill in Electroslag Remelting, ed. B.I. Medovar and G.A. Boyko (Springer New York, New York, NY, 1991), p. 197.

  13. A.B. Pokrovski, G.A. Hasin, V.I. Lazarev, L.A. Hrustalkov, V.A. Pozdnyakov, and B.M. Kukartsev, New Developments in Electroslag Remelting at the Zlatoust Metallurgical Plant, ed. B.I. Medovar and G.A. Boyko (Springer New York, New York, NY, 1991), p. 79.

  14. Z.S. Yu, J.X. Zhang, Y. Yuan, R.C. Zhou, H.J. Zhang, and H.Z. Wang, Mater. Sci. Eng: A 634, 55 https://doi.org/10.1016/j.msea.2015.03.004 (2015).

    Article  Google Scholar 

  15. S.H. Fu, J.X. Dong, M.C. Zhang, and X.S. Xie, Mater. Sci. Eng: A 499, 215 https://doi.org/10.1016/j.msea.2007.11.115 (2009).

    Article  Google Scholar 

  16. A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado, J. Mater. Process. Technol. 177, 469 https://doi.org/10.1016/j.jmatprotec.2006.04.072 (2006).

    Article  Google Scholar 

  17. J.P. Collier, S.H. Wong, J.K. Tien, and J.C. Phillips, Metall. Trans. A 19, 1657 https://doi.org/10.1007/bf02645133 (1988).

    Article  Google Scholar 

  18. Y.C. Liu, Q.Y. Guo, C. Li, Y.P. Mei, X.S. Zhou, Y. Huang, and H.J. Li, Acta Metall. Sin. 52, 1259 https://doi.org/10.11900/0412.1961.2016.00290 (2016).

    Article  Google Scholar 

  19. F. Reyes-Carmona, and A. Mitchell, ISIJ Int. 32, 529 https://doi.org/10.2355/isijinternational.32.529 (1992).

    Article  Google Scholar 

  20. S. Li, G. Cheng, Z. Miao, L. Chen, C. Li, and X. Jiang, ISIJ Int. 57, 2148 https://doi.org/10.2355/isijinternational.ISIJINT-2017-227 (2017).

    Article  Google Scholar 

  21. D. Hou, F.-B. Liu, T.-P. Qu, Z.-H. Jiang, D.-Y. Wang, and Y.-W. Dong, ISIJ Int. 58, 876 https://doi.org/10.2355/isijinternational.ISIJINT-2017-687 (2018).

    Article  Google Scholar 

  22. R. Jiang, Y.D. Song, and P.A. Reed, Int. J. Fatigue 141, 105887 https://doi.org/10.1016/j.ijfatigue.2020.105887 (2020).

    Article  Google Scholar 

  23. C. Marquez, G. L’esperance, and A. Koul, Int. J. Powder Metall. 25, 301. (1989).

    Google Scholar 

  24. R.V. Miner, and R.L. Dreshfield, Metall. Trans. A 12, 261 https://doi.org/10.1007/BF02655199 (1981).

    Article  Google Scholar 

  25. S.F. Yang, S.L. Yang, J.L. Qu, J.H. Du, Y. Gu, P. Zhao, and N. Wang, J. Iron Steel Res. Int. 28, 921 https://doi.org/10.1007/s42243-021-00617-y (2021).

    Article  Google Scholar 

  26. J. Wang, L. Zhang, T. Wen, Y. Ren, and W. Yang, Metall. Mater. Trans. B 52, 1521 https://doi.org/10.1007/s11663-021-02120-x (2021).

    Article  Google Scholar 

  27. Y.F. Qi, J. Li, C.B. Shi, R.M. Geng, and J. Zhang, ISIJ Int. 58, 1275 https://doi.org/10.2355/isijinternational.ISIJINT-2018-003 (2018).

    Article  Google Scholar 

  28. C.B. Shi, Y. Huang, J.X. Zhang, J. Li, and X. Zheng, Int. J. Miner. Metall. Mater. 28, 18 https://doi.org/10.1007/s12613-020-2075-3 (2021).

    Article  Google Scholar 

  29. G. Pateisky, H. Biele, and H.J. Fleischer, J. Vac. Sci. Technol. 9, 1318 https://doi.org/10.1116/1.1317029 (1972).

    Article  Google Scholar 

  30. C.X. Chen, Y. Wang, J. Fu, and E.P. Chen, Acta Metall. Sin. 17, 50. (1981).

    Google Scholar 

  31. Z. Jiang, D. Hou, Y.-W. Dong, Y.-L. Cao, H.-B. Cao, and W. Gong, Metall. Mater. Trans. B 47, 1465 https://doi.org/10.1007/s11663-015-0530-8 (2016).

    Article  Google Scholar 

  32. D. Hou, Z.H. Jiang, Y.W. Dong, W. Gong, Y.L. Cao, and H.B. Cao, ISIJ Int. 57, 1410. https://doi.org/10.2355/isijinternational.ISIJINT-2017-148 (2017).

    Article  Google Scholar 

  33. D. Hou, Z. Jiang, Y. Dong, Y. Cao, H. Cao, and W. Gong, Ironmak. Steelmak. 43, 517 https://doi.org/10.1080/03019233.2015.1110920 (2016).

    Article  Google Scholar 

  34. J.G. Yang, and J.H. Park, Metall. Mater. Trans. B 48, 2147 https://doi.org/10.1007/s11663-017-0994-9 (2017).

    Article  Google Scholar 

  35. S. Duan, X. Shi, M. Mao, W. Yang, S. Han, H. Guo, and J. Guo, Sci. Rep. 8, 5232 https://doi.org/10.1038/s41598-018-23556-3 (2018).

    Article  Google Scholar 

  36. S.C. Duan, X. Shi, F. Wang, M.C. Zhang, Y. Sun, H.J. Guo, and J. Guo, Metall. Mater. Trans. B 50, 3055 https://doi.org/10.1007/s11663-019-01665-2 (2019).

    Article  Google Scholar 

  37. L. Peng, Z. Jiang, and X. Geng, Calphad 70, 101782 https://doi.org/10.1016/j.calphad.2020.101782 (2020).

    Article  Google Scholar 

  38. D. Hou, D. Wang, Z. Jiang, T. Qu, and H. Wang, J. Sustain. Metall. 6, 463 https://doi.org/10.1007/s40831-020-00287-2 (2020).

    Article  Google Scholar 

  39. D. Hou, Z.-H. Jiang, Y.-W. Dong, Y. Li, W. Gong, and F.-B. Liu, Metall. Mater. Trans. B 48, 1885 https://doi.org/10.1007/s11663-017-0921-0 (2017).

    Article  Google Scholar 

  40. S.C. Duan, X. Shi, M.C. Zhang, B. Li, W.S. Yang, F. Wang, H.J. Guo, and J. Guo, Metall. Mater. Trans. B 51, 353 https://doi.org/10.1007/s11663-019-01729-3 (2020).

    Article  Google Scholar 

  41. D. Hou, Z.H. Jiang, Y.W. Dong, W. Gong, Y.L. Cao, and H.B. Cao, ISIJ Int. 57, 1400 https://doi.org/10.2355/isijinternational.ISIJINT-2017-147 (2017).

    Article  Google Scholar 

  42. X. Yang, C. Shi, M. Zhang, and J. Zhang, Steel Res. Int. 83, 244 https://doi.org/10.1002/srin.201100233 (2012).

    Article  Google Scholar 

  43. E.T. Turkdogan, Physical Chemistry of High Temperature Technology (Academic Press, New York, 1980), pp 5–24.

    Google Scholar 

  44. C. Wagner, Thermodynamics of Alloys (Addison-Wesley Press, Cambridge, 1952), pp 47–51.

    Google Scholar 

  45. M.E. Fraser, and A. Mitchell, Ironmak. Steelmak. 3, 279. (1976).

    Google Scholar 

  46. G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, and W.F. Hammetter, Metall. Trans. A 20, 2149. https://doi.org/10.1007/BF02650300 (1989).

    Article  Google Scholar 

  47. Q. Wang, W. Rong, and B. Li, JOM 67, 2705. https://doi.org/10.1007/s11837-015-1621-3 (2015).

    Article  Google Scholar 

  48. Y. Oguti, Y. Tanbe, S. Miyama, and A. Ejima, Tetsu-to-Hagane 63, 2152 https://doi.org/10.2355/tetsutohagane1955.63.13_2152 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Competency Development Program for Industry Specialists (Grant No. P0002019), funded by the Ministry of Trade, Industry and Energy (MOTIE), Korea. This work was also supported by the National Natural Science Foundation of China (Grant No. U1560203) and the research fund of Hanyang University, Korea (HY-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, SC., Lee, MJ., Park, J.H. et al. Effect of Temperature on the Oxidation Behavior of Al and Ti in Inconel® 718 Alloy by ESR Slag with Different Amounts of CaO. JOM 74, 1228–1236 (2022). https://doi.org/10.1007/s11837-021-05139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05139-2

Navigation