Skip to main content
Log in

Computational Evaluation of Flow-Induced Abrasion of Blade and Ladle in Kanbara Reactors for Hot Metal Desulfurization

  • Computational Modeling of Metallurgical Furnaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The impeller blades in Kanbara reactors for hot metal desulfurization often fail due to extreme erosion induced by the hot metal. Computer simulation has made it possible to evaluate the degree of abrasion and predict wear locations. In this work, a numerical model coupled with the erosion formula was used to quantitatively assess the shear stress and abrasion rate. Based on the simulation results, nonuniform local erosive wear was identified, showing that the zones of high erosion concentrated at the lower part of the blade and along two rings of the ladle lining. The impeller immersion depth has a negligible influence on the blade abrasion but remarkably affects the ladle sidewall and bottom. The quantitative correlations of abrasion rate as a function of blade dimension and rotation speed were obtained. The results can be used to identify the erosion problems and optimize impeller design and operation to extend the service life of both the impeller and the ladle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V.V. Visuri, T. Vuolio, T. Haas, and T. Fabritius, Steel Res. Int. 91, 1900454 (2020).

    Article  Google Scholar 

  2. Y. Nakai, I. Sumi, H. Matsuno, N. Kikuchi, and Y. Kishimoto, ISIJ Int. 50, 403 (2010).

    Article  Google Scholar 

  3. R. Tanaka, M.A. Uddin, and Y. Kato, ISIJ Int. 58, 620 (2018).

    Article  Google Scholar 

  4. S. Horiuchi, M.A. Uddin, Y. Kato, and N. Kikuchi, ISIJ Int. 54, 82 (2014).

    Article  Google Scholar 

  5. A.K. Pukkella, R. Vysyaraju, V. Tammishetti, B. Rai, and S. Subramanian, Chem. Eng. J. 358, 621 (2019).

    Article  Google Scholar 

  6. J.J. Derksen, AIChE J. 49, 2700 (2003).

    Article  Google Scholar 

  7. L. Wu, M. Gong, and J. Wang, Ind. Eng. Chem. Res. 57, 1714 (2018).

    Article  Google Scholar 

  8. N. Lamarque, B. Zoppe, O. Lebaigue, Y. Dolias, M. Bertrand, and F. Ducros, Chem. Eng. Sci. 65, 4307 (2010).

    Article  Google Scholar 

  9. T. Yamamoto, W. Kato, S.V. Komarov, and Y. Ishiwata, Metall. Mater. Trans. B 50, 2547 (2019).

    Article  Google Scholar 

  10. T. Yamamoto, Y. Fang, and S.V. Komarov, Chem. Eng. J. 367, 25 (2019).

    Article  Google Scholar 

  11. D.S. Huang and F.C. Huang, Appl. Therm. Eng. 73, 222 (2014).

    Article  Google Scholar 

  12. L. Xiao, K. Chen, B. Dan, Z. Rong, and R. Wang, Adv. Mech. Eng. 8, 1 (2016).

    Google Scholar 

  13. J.A. Sanchez Perez, E.M. Rodriguez Porcel, J.L. Casas Lopez, J.M. Fernandez Sevilla, and Y. Chisti, Chem. Eng. J. 124, 1 (2006).

    Article  Google Scholar 

  14. P.H.R.V. de Melo, J.J.M. Peixoto, G.S. Galante, B.H.M. Loiola, C.A. da Silva, I.A. da Silva, and V. Seshadri, J. Mater. Res. Technol. 8, 3764 (2019).

    Article  Google Scholar 

  15. Q. Wang, C. Tan, A. Huang, W. Yan, H. Gu, Z. He, and G. Li, Metall. Mater. Trans. B 52, 3265 (2021).

    Article  Google Scholar 

  16. Q. Wang, F. Tan, Z. He, G. Li, and J. Li, JOM 73, 2709 (2021).

    Article  Google Scholar 

  17. Q. Wang, C. Tan, A. Huang, W. Yan, H. Gu, Z. He, and G. Li, Metall. Mater. Trans. B 52, 1344 (2021).

    Article  Google Scholar 

  18. Q. Li, M. Li, S. Kuang, and Z. Zou, JOM 68, 3126 (2016).

    Article  Google Scholar 

  19. Q. Li, X. Shen, S. Guo, M. Li, and Z. Zou, Steel Res. Int. 92, 2100239 (2021)

    Article  Google Scholar 

  20. Q. Li, S. Ma, X. Shen, M. Li, and Z. Zou, Metals 11, 1596 (2021).

    Article  Google Scholar 

  21. B.E. Launder, Int. J. Heat Fluid Flow. 10, 282 (1989).

    Article  Google Scholar 

  22. B.E. Launder, G.J. Reece, and W. Rodi, J. Fluid Mech. 68, 537 (1975).

    Article  Google Scholar 

  23. M.M. Gibson and B.E. Launder, J. Fluid Mech. 86, 491 (1978).

    Article  Google Scholar 

  24. J.U. Brackbill, D.B. Kothe, and C. Zemach, J. Comput. Phys. 100, 335 (1992).

    Article  MathSciNet  Google Scholar 

  25. C.W. Hirt and B.D. Nichols, J. Comput. Phys. 39, 201 (1981).

    Article  Google Scholar 

  26. O. Ubbink and R.I. Isssa, J. Comput. Phys. 153, 26 (1999).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China under Grant No. 52074079 and the Fundamental Research Funds of the Central Universities of China under Grant No. N2125018 for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Ma, S., Shen, X. et al. Computational Evaluation of Flow-Induced Abrasion of Blade and Ladle in Kanbara Reactors for Hot Metal Desulfurization. JOM 74, 1588–1600 (2022). https://doi.org/10.1007/s11837-021-05120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05120-z

Navigation