Skip to main content
Log in

Role of Maturation Temperature on Structural Substitution of Carbonate in Hydroxyapatite Nanoparticles

  • Materials Recovery Considerations for Design of Next-generation Functional Materials
  • Published:
JOM Aims and scope Submit manuscript

A Correction to this article was published on 05 April 2021

This article has been updated

Abstract

The phosphorus (P) release efficiency of hydroxyapatite nanoparticles (HANPs), a novel controlled-release fertilizer, could potentially be tuned by introducing carbonate ions into the crystal lattice. We used an atom-efficient synthesis method for carbonated HANPs from CO2-oversaturated phosphoric acid before neutralization with Ca(OH)2. The effect of the maturation temperature on the physicochemical properties of the HANPs was analyzed by Fourier-transform infrared (FTIR) spectroscopy, nano-FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The overall content of carbonate incorporated into the apatite decreased significantly after maturation at 150°C to 2.2 wt.%, compare with 6.6 wt.% and 7.4 wt.% after maturation at 45°C and 95°C, respectively. The ratio of A- to B-type carbonate was 53:46 for HANPs maturated at 45°C, where all columnar hydroxyls were replaced by carbonate. The presence of an amorphous layer in the crystalline apatite was confirmed by modulating the laser strength in nano-FTIR spectroscopy. The ability to tune the carbonate content provides a basis for testing the resulting solubility changes in in vitro and field settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. S.V. Dorozhkin, Prog. Biomater. 3, 9–70. (2016).

    Article  Google Scholar 

  2. S.V. Dorozhkin, and M. Epple, Angew. Chem. Int. Ed. 7, 3130–3146. (2002).

    Article  Google Scholar 

  3. N.K. Fageria, The Use of Nutrients in Crop Plants (CRC Press Taylor and Francis Group, New York, 2016)

    Book  Google Scholar 

  4. D. Montalvo, M.J. McLaughlin, and F. Degryse, Soil Sci. Soc. Am. J. 3, 551–558. (2015).

    Article  Google Scholar 

  5. M.B. Taşkın, Ö. Şahin, H. Taskin, O. Atakol, A. Inal, and A. Gunes, J. Plant Nutr. 3, 1148–1154. (2018).

    Article  Google Scholar 

  6. L. Marchiol, A. Filippi, A. Adamiano, L.D. Esposti, M. Iafisco, A. Mattiello, E. Petrussa, and E. Braidot, Agronomy 161, 93999. (2019).

    Google Scholar 

  7. D.L. Correll, J. Environm. Qual. 7, 261–266. (1998).

    Article  Google Scholar 

  8. R. Liu, and R. Lal, Sci. Rep. 3, 5686. (2014).

    Google Scholar 

  9. L. Xiong, P. Wang, and P.M. Kopittke, Geoderma 3, 116–125. (2018).

    Article  Google Scholar 

  10. Q. Liu, J.P. Matinlinna, Z. Chen, C. Ning, G. Ni, H. Pan, and B.W. Darvell, Ceram. Int. 31, 6149–6157. (2015).

    Article  Google Scholar 

  11. H. Pan, and B.W. Darvell, Cryst. Growth Des. 2, 845–850. (2010).

    Article  Google Scholar 

  12. A. Ito, K. Maekawa, S. Tsutsumi, F. Ikazaki, and T. Tateishi, J. Biomed. Mater. Res. 4, 522–528. (1997).

    Article  Google Scholar 

  13. M.E. Fleet, Carbonated Hydroxyapatite: Materials, Synthesis, and Applications (CRC Press Taylor and Francis Group, London, 2014)

    Book  Google Scholar 

  14. T. Ivanova, O. Frank-Kamenetskaya, A. Kol’tsov, and V. Ugolkov, J. Solid State Chem. 5, 340–349. (2001).

    Article  Google Scholar 

  15. G. Penel, G. Leroy, C. Rey, and E. Bres, Calcified Tissue Int. 3, 475–481. (1998).

    Article  Google Scholar 

  16. A. Krajewski, M. Mazzocchi, P.L. Buldini, A. Ravaglioli, A. Tinti, P. Taddei, and C. Fagnano, J. Mol. Struct. 2, 221–228. (2005).

    Article  Google Scholar 

  17. E. Landi, G. Celotti, G. Logroscino, and A. Tampieri, J. Eur. Ceram. Soc. 2, 2931–2937. (2003).

    Article  Google Scholar 

  18. A. Ślósarczyk, Z. Paszkiewicz, and C. Paluszkiewicz, J. Mol. Struct. 2, 657–661. (2005).

    Article  Google Scholar 

  19. A. Anwar, M.N. Asghar, Q. Kanwal, M. Kazmi, and A. Sadiqa, J. Mol. Struct. 3, 283–286. (2016).

    Article  Google Scholar 

  20. S. Amarie, P. Zaslansky, Y. Kajihara, E. Griesshaber, W.W. Schmahl, and F. Keilmann, Beilstein J. Nanotechnol. 2, 312–323. (2012).

    Article  Google Scholar 

  21. M. Kosmulski, J. Colloid Interface Sci. 7, 439–448. (2009).

    Article  Google Scholar 

  22. M.B. Jakubinek, C.J. Samarasekera, and M.A. White, J. Mater. Res. 7, 287–292. (2006).

    Article  Google Scholar 

  23. M. Arellano-Jiménez, R. García-García, and J. Reyes-Gasga, J. Phys. Chem. Solids 2, 390–395. (2009).

    Article  Google Scholar 

  24. D.A. Nowicki, J.M. Skakle, and I.R. Gibson, J. Mater. Chem. A 1, 5367–5377. (2018).

    Article  Google Scholar 

  25. D. Golden, and D. Ming, Soil Sci. Sci. Am. J. 7, 657–664. (1999).

    Article  Google Scholar 

  26. J.M. Delgado-López, M. Iafisco, I. Rodríguez, A. Tampieri, M. Prat, and J. Gómez-Morales, Acta Biomater. 3, 3491–3499. (2012).

    Article  Google Scholar 

  27. M.E. Fleet, Am. Mineral. 9, 149–157. (2017).

    Article  Google Scholar 

  28. Y. Wang, T. Azaïs, M. Robin, A. Vallée, C. Catania, P. Legriel, G. Pehau-Arnaudet, F. Babonneau, M.-M. Giraud-Guille, and N. Nassif, Nat. Mater. 9, 724–733. (2012).

    Article  Google Scholar 

  29. Y. Sakhno, L. Bertinetti, M. Iafisco, A. Tampieri, N. Roveri, and G. Martra, J. Phys. Chem. C 9, 16640–16648. (2010).

    Article  Google Scholar 

  30. Y. Sakhno, P. Ivanchenko, M. Iafisco, A. Tampieri, and G. Martra, J. Phys. Chem. C 3, 5928–5937. (2015).

    Article  Google Scholar 

  31. M.E. Fleet, Biomaterials 6, 1473–1481. (2009).

    Article  Google Scholar 

  32. A. Antonakos, E. Liarokapis, and T. Leventouri, Biomaterials 5, 3043–3054. (2007).

    Article  Google Scholar 

  33. C. Rey, C. Combes, C. Drouet, H. Sfihi, and A. Barroug, Mater. Sci. Eng. C 3, 198–205. (2007).

    Article  Google Scholar 

  34. B. Ben-Nissan, Advances in Calcium Phosphate Biomaterials (Springer, Heidelberg, 2014)

    Book  Google Scholar 

  35. J. Barralet, S. Best, and W. Bonfield, J. Biomed. Mater. Res 1, 79–86. (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a research grant from the US Department of Agriculture (NIFA award 2018-67021-27965). We would like to acknowledge the Advanced Material Characterization Laboratory at the University of Delaware for providing access to FTIR, XRD, BET, and FE-SEM analyses of the synthesized minerals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deb Jaisi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to the funding organization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was updated to correct the inversion of the authors’ family and given names.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1706 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhno, Y., Iafisco, M. & Jaisi, D. Role of Maturation Temperature on Structural Substitution of Carbonate in Hydroxyapatite Nanoparticles. JOM 73, 1044–1052 (2021). https://doi.org/10.1007/s11837-021-04587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04587-0

Navigation