Skip to main content
Log in

Textured Polymer Surfaces Mimicking the Tactile Friction Between Wood and Skin

  • Advanced Coating and Thin Film Materials for Energy, Aerospace and Biological Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Polymer-based furniture with wood-like visual printing is widely used in domestic and office applications. Although polymers could fulfil the high quality requirements of strength and appearance, they cannot mimic the feel of wood during touch. In this study, polymers with textured surfaces were designed to mimic the tactile friction and naturalness of wood. The influence of a series of factors on tactile friction was assessed. Textured polypropylene surfaces showed a 14.8% reduction in friction, and were more similar to wood compared to un-textured rough polypropylene surface, indicating the significant influence of surface texture on tactile friction. The touch perception test further proved that polymer samples were perceived as more natural with a rough or textured surface than with a smooth surface. This study suggests that, with a detailed design of the surface texture parameter, it is possible to mimic the tactile friction and naturalness of wood by using textured polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Zhou, J. Mo, Y. Li, J. Xu, X. Zhang, S. Cai, and Z. Jin, X. Zhou, J. Mo, Y. Li, J. Xu, X. Zhang, S. Cai, and Z. Jin, Tribol. Int. 123, 286 (2018).

    Article  Google Scholar 

  2. S. Derler, and L.C. Gerhardt, S. Derler, and L.C. Gerhardt, Tribol. Lett. 45, 1 (2012).

    Article  Google Scholar 

  3. X. Zeng, and E. van der Heide, X. Zeng, and E. van der Heide, Skin Care Suppl. H&PC Today 10(2), 14 (2015).

    Google Scholar 

  4. S.A. Jadhav, A.V. Rane, K. Kanny, S.S. Mulge, V.K. Abitha, and S. Thomas, S.A. Jadhav, A.V. Rane, K. Kanny, S.S. Mulge, V.K. Abitha, and S. Thomas, Application of blends and polyurethane interpenetrating polymer networks, in Polyurethane Polymers: Blends and Interpenetrating Polymer Networks. ed. by S. Thomas, J. Datta, J.T. Haponiuk, and A. Reghunadhan (Elsevier, Amsterdam, 2017), pp. 359–375.

    Chapter  Google Scholar 

  5. H. Dahy, H. Dahy, Sensors 19, 738 (2019).

    Article  Google Scholar 

  6. K.E. Overvliet, and S. Soto-Faraco, K.E. Overvliet, and S. Soto-Faraco, Acta Psychol. 136, 92 (2011).

    Article  Google Scholar 

  7. W. Yin, Z. Liu, P. Tian, D. Tao, Y. Meng, Z. Han, and Y. Tian, W. Yin, Z. Liu, P. Tian, D. Tao, Y. Meng, Z. Han, and Y. Tian, Biotribology 5, 67 (2016).

    Article  Google Scholar 

  8. M. Xu, L. Li, M. Wang, and B. Luo, M. Xu, L. Li, M. Wang, and B. Luo, Tribol. Trans. 57, 87 (2014).

    Google Scholar 

  9. B.A. Svensson, S. Nystrom, P.A. Gradin, and H. Hoglund, B.A. Svensson, S. Nystrom, P.A. Gradin, and H. Hoglund, Tribol. Int. 42, 190 (2009).

    Article  Google Scholar 

  10. M.A. Darden, and C.J. Schwartz, M.A. Darden, and C.J. Schwartz, Wear 267, 1289 (2009).

    Article  Google Scholar 

  11. S. Schreiner, M. Rechberger, and J. Bertling, S. Schreiner, M. Rechberger, and J. Bertling, Tribol. Int. 63, 21 (2013).

    Article  Google Scholar 

  12. S.P. Tay, X. Hu, P. Fleming, and S. Forrester, S.P. Tay, X. Hu, P. Fleming, and S. Forrester, Mater. Des. 89, 177 (2016).

    Article  Google Scholar 

  13. J.D. Ndengue, I. Cesini, J. Faucheu, E. Chatelet, H. Zahouani, D. Delafosse, and F. Massi, J.D. Ndengue, I. Cesini, J. Faucheu, E. Chatelet, H. Zahouani, D. Delafosse, and F. Massi, IEEE T. Haptics 10(3), 409 (2017).

    Article  Google Scholar 

  14. S. Zhang, A. Rodriguez Urribarri, M. Morales Hurtado, X. Zeng, and E. van der Heide, S. Zhang, A. Rodriguez Urribarri, M. Morales Hurtado, X. Zeng, and E. van der Heide, Int. J. Solids Struct. 56–57, 53 (2015).

    Article  Google Scholar 

  15. J. Chen, H. Yang, J. Li, J. Chen, Y. Zhang, and X. Zeng, J. Chen, H. Yang, J. Li, J. Chen, Y. Zhang, and X. Zeng, J. Mech. Behav. Biomed 94, 308 (2019).

    Article  Google Scholar 

  16. U. Heinrich, U. Koop, M.C. Leneven-Duchemin, K. Osterrieder, S. Bielfeldt, C. Chkarnat, J. Deggwert, D. Hantschel, S. Jaspers, H.P. Nissen, M. Rohr, G. Schneider, and H. Tronnier, U. Heinrich, U. Koop, M.C. Leneven-Duchemin, K. Osterrieder, S. Bielfeldt, C. Chkarnat, J. Deggwert, D. Hantschel, S. Jaspers, H.P. Nissen, M. Rohr, G. Schneider, and H. Tronnier, Int. J. Cosmet. Sci. 25(1–2), 45 (2003).

    Article  Google Scholar 

  17. S. Comaish, and E. Bottoms, S. Comaish, and E. Bottoms, Br. J. Dermatol. 84(1), 37 (1971).

    Article  Google Scholar 

  18. S.E. Tomlinson, R. Lewis, and M.J. Carre, S.E. Tomlinson, R. Lewis, and M.J. Carre, Wear 267, 1311 (2009).

    Article  Google Scholar 

  19. A. C. Rodriguez Urribarri, The role of tactile friction on the differentiation of surface textures. PhD thesis, University of Twente, ISBN 978-90-365-4222-7 (2016).

  20. S. Zhang, X. Zeng, D.T.A. Matthews, A. Igartua, E. Rodriguez-Vidal, J. Contrearas Fortes, and E. van der Heide, S. Zhang, X. Zeng, D.T.A. Matthews, A. Igartua, E. Rodriguez-Vidal, J. Contrearas Fortes, and E. van der Heide, Friction 5(2), 207 (2017).

    Article  Google Scholar 

  21. S. Ding, Y. Pan, M. Tong, and X. Zhao, S. Ding, Y. Pan, M. Tong, and X. Zhao, Sensors 17, 2748 (2017).

    Article  Google Scholar 

  22. D. Gueorguiev, E. Vezzoli, A. Mouraux, B. Lemaire-Semail, and J.-L. Thonnard, D. Gueorguiev, E. Vezzoli, A. Mouraux, B. Lemaire-Semail, and J.-L. Thonnard, J. R. Soc. Interface 14, 2017641 (2017).

    Article  Google Scholar 

  23. I. Cesini, J.D. Ndengue, E. CHatelet, J. Faucheu, and F. Massi, I. Cesini, J.D. Ndengue, E. CHatelet, J. Faucheu, and F. Massi, Tribol. Int. 120, 330 (2018).

    Article  Google Scholar 

  24. W. Tang, R. Liu, Y. Shi, C. Hu, S. Bai, and H. Zhu, W. Tang, R. Liu, Y. Shi, C. Hu, S. Bai, and H. Zhu, J. Adv. Res. 21, 129–139 (2020).

    Article  Google Scholar 

  25. W. Tang, X. Lu, S. Chen, S. Ge, X. Jing, X. Wang, R. Liu, and H. Zhu, W. Tang, X. Lu, S. Chen, S. Ge, X. Jing, X. Wang, R. Liu, and H. Zhu, J. Text. I. 111, 623 (2020).

    Article  Google Scholar 

  26. M.K. Saleen, C. Yilmaz, and C. Basdogan, M.K. Saleen, C. Yilmaz, and C. Basdogan, IEEE T. Haptics 4(11), 599 (2018).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of Shanghai (17ZR1442100), FP7 Marie Curie CIG (PCIG10-GA-2011-303922), and European Fund for Regional Development GO EFRO 209-18331.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Zhang or Xiangqiong Zeng.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Rodríguez Urribarrí, A.C., Wang, H. et al. Textured Polymer Surfaces Mimicking the Tactile Friction Between Wood and Skin. JOM 73, 515–523 (2021). https://doi.org/10.1007/s11837-020-04513-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04513-w

Navigation