Skip to main content
Log in

Extraordinary Strengthening of Magnesium by Solid-State Diffusion of Copper in Mg-0.5Cu Alloy

  • Aluminum and Magnesium: New Alloys and Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A powder-processed hot-extruded high-performance Mg-0.5 wt.% Cu alloy has been developed by solid-state diffusion of elemental copper into commercially pure magnesium powder. Copper, in nanoparticle form, was blended to form a dry-coat layer on micrometer-size magnesium particles, which subsequently homogeneously diffused, forming a single-phase solid solution during the sintering process. Copper as a solute atom did not act as a grain refiner. Investigation of the mechanical properties revealed that the strength properties of commercially pure magnesium were significantly improved (macrohardness by 32.5%, microhardness by 42.7%, tensile yield strength by 114%, tensile strength by 69%, compressive yield strength by 46%, and compressive strength by 48%) due to the dissolution of copper as solute atoms. The ductility of the magnesium suffered marginal loss despite the fracture mode being ductile, which was due to decohesion at the magnesium interparticle boundaries induced by the relatively higher copper concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851 (2008).

    Google Scholar 

  2. I. Ostrovsky and Y. Henn, in International Conference on New Challenges in Aeronautics, Moscow (2007), p. 1.

  3. J. Deetz, JOM 57, 51 (2005).

    Google Scholar 

  4. G. Manoj and G. Shwetabh, JOJ Mater. Sci. 2, 002–555598 (2017).

    Google Scholar 

  5. X. Chen, L. Liu, F. Pan, J. Mao, X. Xu, and T. Yan, Mater. Sci. Eng., B 197, 67 (2015).

    Google Scholar 

  6. X. Chen, J. Liu, and F. Pan, J. Phys. Chem. Solids 74, 872 (2013).

    Google Scholar 

  7. S.K. Oh, H.W. Kim, M.J. Kim, K.S. Eom, J.S. Kyung, D.H. Kim, E.A. Cho, and H.S. Kwon, J. Alloys Compd. 741, 590 (2018).

    Google Scholar 

  8. S. Oh, M. Kim, K. Eom, J. Kyung, D. Kim, E. Cho, and H. Kwon, Int. J. Hydrog. Energy 41, 5296 (2016).

    Google Scholar 

  9. S. Oh, T. Jo, M. Kim, J. Lim, K. Eom, D. Kim, E. Cho, and H. Kwon, Int. J. Hydrog. Energy 42, 7761 (2017).

    Google Scholar 

  10. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

    Google Scholar 

  11. Y. Zhao, M.I. Jamesh, W.K. Li, G. Wu, C. Wang, Y. Zheng, K.W.K. Yeung, and P.K. Chu, Acta Biomater. 10, 544 (2014).

    Google Scholar 

  12. A.M. Kumar, S.F. Hassan, A.A. Sorour, M. Paramsothy, and M. Gupta, J. Mater. Eng. Perform. 27, 3419 (2018).

    Google Scholar 

  13. C. Liu, X. Fu, H. Pan, P. Wan, L. Wang, L. Tan, K. Wang, Y. Zhao, K. Yang, and P.K. Chu, Sci. Rep. 6, 27374 (2016).

    Google Scholar 

  14. M. Lotfpour, M. Emamy, C. Dehghanian, and K. Tavighi, J. Mater. Eng. Perform. 26, 2136 (2017).

    Google Scholar 

  15. M.O. Pekguleryuz and A.A. Kaya, Adv. Eng. Mater. 5, 866 (2003).

    Google Scholar 

  16. J.H. Jun, J.M. Kim, B.K. Park, K.T. Kim, and W.J. Jung, J. Mater. Sci. 40, 2659 (2005).

    Google Scholar 

  17. S. Golmakaniyoon and R. Mahmudi, Mater. Sci. Eng., A 528, 5228 (2011).

    Google Scholar 

  18. J. Buha, Mater. Sci. Eng., A 489, 127 (2008).

    Google Scholar 

  19. S. Zhu, T. Luo, T. Zhang, Y. Li, and Y. Yang, Mater. Sci. Eng., A 689, 203 (2017).

    Google Scholar 

  20. J. Wang, R. Liu, T. Luo, and Y. Yang, Mater. Des. 47, 746 (2013).

    Google Scholar 

  21. Z. Zhang, A. Couture, and A. Luo, Scr. Mater. 39, 45 (1998).

    Google Scholar 

  22. J. Zhang, Z.X. Guo, F.S. Pan, Z.S. Li, and X.D. Luo, Mater. Sci. Eng., A 456, 43 (2007).

    Google Scholar 

  23. H.M. Zhu, G. Sha, J.W. Liu, C.L. Wu, C.P. Luo, Z.W. Liu, R.K. Zheng, and S.P. Ringer, J. Alloys Compd. 509, 3526 (2011).

    Google Scholar 

  24. M.L. He, T.J. Luo, Y.T. Liu, T. Lin, J.X. Zhou, and Y.S. Yang, J. Alloys Compd. 767, 1216 (2018).

    Google Scholar 

  25. H.M. Zhu, C.P. Luo, J.W. Liu, and D.L. Jiao, Trans. Nonferr. Met. Soc. China 24, 605 (2014).

    Google Scholar 

  26. H.M. Zhu, C.P. Luo, J.W. Liu, and D.L. Jiao, Trans. Nonferr. Met. Soc. China 24, 316 (2014).

    Google Scholar 

  27. M. Hansen, J. Inst. Met. 37, 93 (1927).

    Google Scholar 

  28. N.I. Stepanov and I.I. Kornilov, Izv. Inst. Fiz.-Khim. Analisa 7, 89 (1935).

    Google Scholar 

  29. A.A. Nayeb-Hashemi and J.B. Clark, Bull. Alloy Phase Diagr. 5, 36 (1984).

    Google Scholar 

  30. S.F. Hassan and M. Gupta, Mater. Sci. Technol. 19, 253 (2003).

    Google Scholar 

  31. J. Dai, B. Jiang, J. Zhang, Q. Yang, Z. Jiang, H. Dong, and F. Pan, J. Phase Equilib. Diffus. 36, 613 (2015).

    Google Scholar 

  32. S.F. Hassan, M.T. Islam, S. Nouari, N. Al-Aqeeli, M.M.A. Baig, and F. Patel, J. Alloys Compd. 787, 1015 (2019).

    Google Scholar 

  33. S. Fida Hassan, O. Siddiqui, M.F. Ahmed, and A.I. AlNawwah, J. Eng. Mater. Technol. 141, 021007 (2018).

    Google Scholar 

  34. Powder Diffraction File (International Center for Diffraction Data. Swarthmore, USA, 1991).

  35. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction, 8th ed. (New York: Wiley, 2011), pp. 226–227.

    Google Scholar 

  36. P. Burke, G.J. Kipouros, D. Fancelli, and V. Laverdiere, Can. Metall. Q. 48, 123 (2009).

    Google Scholar 

  37. P. Burke, C. Petit, V. Vuaroqueaux, A. Doyle, and G.J. Kipouros, Can. Metall. Q. 50, 240 (2011).

    Google Scholar 

  38. Y.Q. Zhang, S.M. Du, and J. Hu, MATEC Web of Conference 67, 03035 (2016).

    Google Scholar 

  39. S.F. Hassan, O.O. Nasirudeen, N. Al-Aqeeli, N. Saheb, M.M.A. Baig, and F. Patel, J. Mater. Res. 33, 130 (2018).

    Google Scholar 

  40. A.C. Hänzi, A. Sologubenko, P. Gunde, M. Schinhammer, and P.J. Uggowitzer, Philos. Mag. Lett. 92, 417 (2012).

    Google Scholar 

  41. M.R. Barnett, C.H.J. Davies, and X. Ma, Scr. Mater. 52, 627 (2005).

    Google Scholar 

  42. R.E. Reed-Hill, Physical Metallurgy Principles, 2nd ed. (New York: D. Van Nostrand Company, 1964), pp. 192–194.

    Google Scholar 

  43. W.F. Hosford, The Mechanics of Crystals and Textures Polycrystals (New York: Oxford University Press, 1993).

    Google Scholar 

  44. G.S. KIM, Small Volume Investigation of Slip and Twinning in Magnesium Single Crystals (Doctoral Thesis, Université Grenoble, 2011).

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through Project No. IN151019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fida Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, S.F., Islam, M.T., Nouari, S. et al. Extraordinary Strengthening of Magnesium by Solid-State Diffusion of Copper in Mg-0.5Cu Alloy. JOM 72, 1597–1606 (2020). https://doi.org/10.1007/s11837-020-04023-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04023-9

Navigation