Skip to main content
Log in

Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The proposal of configurational entropy maximization to produce massive solid-solution (SS)-strengthened, single-phase high-entropy alloy (HEA) systems has gained much scientific interest. Although most of this interest focuses on the basic role of configurational entropy in SS formability, setting future research directions also requires the overall property benefits of massive SS strengthening to be carefully investigated. To this end, taking the most promising CoCrFeMnNi HEA system as the starting point, we investigate SS formability, deformation mechanisms, and the achievable mechanical property ranges of different compositions and microstructural states. A comparative assessment of the results with respect to room temperature behavior of binary Fe-Mn alloys reveals only limited benefits of massive SS formation. Nevertheless, the results also clarify that the compositional requirements in this alloy system to stabilize the face-centered cubic (fcc) SS are sufficiently relaxed to allow considering nonequiatomic compositions and exploring improved strength–ductility combinations at reduced alloying costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For example dual-phase steels2022 or Al7000 alloys23 can provide a wide spectrum of properties with plain and commercially feasible thermomechanical treatments and inexpensive alloying.

  2. A total of 25 indentation experiments carried out at different processing states reveal an increase in the as-cast Vickers hardness value (under1 kg. load) of 130 ± 3 to 200 ± 10 in the hot-rolled state (during which only partial recrystallization is observed), while the hardness of the homogenized state drops down to the as cast state level at 139 ± 9.

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  2. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).

    Article  Google Scholar 

  3. Y. Zhang, X. Yang, and P.K. Liaw, JOM 64, 830 (2012).

    Article  Google Scholar 

  4. S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505 (2011).

    Article  Google Scholar 

  5. S. Guo and C. Liu, Prog. Nat. Sci. Mater. Int. 21, 433 (2011).

    Article  Google Scholar 

  6. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375, 213 (2004).

    Article  Google Scholar 

  7. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    Article  Google Scholar 

  8. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloy. Compd. 2011, 6043 (2011).

    Article  Google Scholar 

  9. F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater. 61, 2628 (2013).

    Article  Google Scholar 

  10. M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe, Scripta Mater. 72, 5 (2014).

    Article  Google Scholar 

  11. K.G. Pradeep, N. Wanderka, P. Choi, J. Banhart, B.S. Murty, and D. Raabe, Acta Mater. 61, 4696 (2013).

    Article  Google Scholar 

  12. F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).

    Article  Google Scholar 

  13. Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George, Intermetallics 46, 131 (2014).

    Article  Google Scholar 

  14. P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.-W. Tsai, and J.-W. Yeh, J. Alloy. Compd. 587, 544 (2014).

    Article  Google Scholar 

  15. K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, Acta Mater. 61, 4887 (2013).

    Article  Google Scholar 

  16. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Scripta Mater. 68, 526 (2013).

    Article  Google Scholar 

  17. A. Gali and E.P. George, Intermetallics 39, 74 (2013).

    Article  Google Scholar 

  18. C. Zhu, Z.P. Lu, and T.G. Nieh, Acta Mater. 61, 2993 (2013).

    Article  Google Scholar 

  19. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, and O.N. Senkov, J. Alloy. Compd. 591, 11 (2014).

    Article  Google Scholar 

  20. M.S. Rashid, Ann. Rev. Mater. Sci. 11, 245 (1981).

    Article  Google Scholar 

  21. S. Sadagopan and D. Urban, AISI/DOE Technology Roadmap Program (Oak Ridge, TN: Office of Scientific and Technical Information, 2003).

  22. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Acta Mater. 59, 658 (2011).

    Article  Google Scholar 

  23. T. Dursun and C. Soutis, Mater. Des. 56, 862 (2014).

    Article  Google Scholar 

  24. H. Springer and D. Raabe, Acta Mater. 60, 4950 (2012).

    Article  Google Scholar 

  25. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, Scripta Mater. 61, 737 (2009).

    Article  Google Scholar 

  26. S. Mandal, K.G. Pradeep, S. Zaefferer, and D. Raabe, Scripta Mater. 81, 16 (2014).

    Article  Google Scholar 

  27. C.C. Tasan, J.P.M. Hoefnagels, and M.G.D. Geers, Scripta Mater. 62, 835 (2010).

    Article  Google Scholar 

  28. A. Holden, J.D. Bolton, and E.R. Petty, J. Iron Steel I, 721 (1971).

    Google Scholar 

  29. Y. Tomota, M. Strum, and J.W. Morris Jr., Metall. Trans. A 17A, 537 (1986).

    Article  Google Scholar 

  30. A.L. Schaeffler, Metal Progr. 56, 680 (1949).

    Google Scholar 

  31. U. Brüx, G. Frommeyer, O. Grässel, L.W. Meyer, and A. Weise, Steel Res. 73, 294 (2002).

    Google Scholar 

  32. H. Ding, H. Ding, D. Song, Z. Tang, and P. Yang, Mater. Sci. Eng. A 528, 868 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the financial support by the European Union via the ERC Advanced Grant “SMARTMET” and the contributions of Michael Kulse, Frank Schlüter, Frank Rütters, Michael Adamek, Jiali Zhang, and Motomichi Koyama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Tasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasan, C.C., Deng, Y., Pradeep, K.G. et al. Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System. JOM 66, 1993–2001 (2014). https://doi.org/10.1007/s11837-014-1133-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1133-6

Keywords

Navigation