Skip to main content
Log in

Algebraic and Parametric Solvers for the Power Flow Problem: Towards Real-Time and Accuracy-Guaranteed Simulation of Electric Systems

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The power flow model performs the analysis of electric distribution and transmission systems. With this statement at hand, in this work we present a summary of those solvers for the power flow equations, in both algebraic and parametric version. The application of the Alternating Search Direction method to the power flow problem is also detailed. This results in a family of iterative solvers that combined with Proper Generalized Decomposition technique allows to solve the parametric version of the equations. Once the solution is computed using this strategy, analyzing the network state or solving optimization problems, with inclusion of generation in real-time, becomes a straightforward procedure since the parametric solution is available. Complementing this approach, an error strategy is implemented at each step of the iterative solver. Thus, error indicators are used as an stopping criteria controlling the accuracy of the approximation during the construction process. The application of these methods to the model IEEE 57-bus network is taken as a numerical illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Shrivastava VK, Rahi O, Gupta VK, Kuntal JS (2012) Optimal placement methods of distributed generation: a review. IEEE Transactions on Power Systems, pp. 978–981

  2. Stagg GW, El-Abiad AH (1968) Computer methods in power system-analysis. McGraw-Hill, New York

    Google Scholar 

  3. Elgerd OI (1972) Electric energy systems theory. McGraw-Hill, New York

    Google Scholar 

  4. Wasley R, Shlash M (1974) Newton-Raphson algorithm for 3-phase load flow. In: Proceedings of the institution of electrical engineers, vol 121, No. 7, pp 630–638

    Article  Google Scholar 

  5. Dimitrovski A, Tomsovic K (2004) Slack bus treatment in load flow solutions with uncertain nodal powers. In: Probabilistic methods applied to power systems, 2004 international conference onm, Ames (Iowa), pp 532–537

  6. Grainer JJ, Stevenson W (2008) McGraw-Hill Education, New York

  7. Kabir S, Chowdhury A, Rahman M, Alam J (2014) Inclusion of slack bus in Newton Raphson load flow study. 2014 International conference on electrical and computer engineering (ICECE), Dhaka, pp 282–284

  8. Ward JB, Hale HW (1956) Digital computer solution of power-flow problems [includes discussion]. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol 75, No. 3

  9. Glimn A, Stagg G (1957) Automatic calculation of load flows. Power apparatus and systems, Part III. IEEE transactions of the American Institute of Electrical Engineers, vol 76, No. 3, pp 817–825

    Google Scholar 

  10. Brown RJ, Tinney WF (1957) Digital solutions for large power networks. Transactions of the American Institute of Electrical Engineers. Part III: Power apparatus and systems, vol 76, No. 3, pp 347–351

    Google Scholar 

  11. Hale H, Goodrich R (1959) Digital computation or power flow—some new aspects. Power apparatus and systems, Part III. Transactions of the American Institute of Electrical Engineers, vol 78, No. 3, pp 919–923

  12. Gupta P, Humphrey Davies M (1961) Digital computers in power system analysis. In: Proceedings of the IEEE-Part A: power engineering, vol 108, No. 41, pp 383–398

    Article  Google Scholar 

  13. Brameller A, Denmead J (1962) Some improved methods for digital network analysis. In: Proceedings of the IEEE-part A: power engineering, vol 109, No. 43, pp 109–116

    Article  Google Scholar 

  14. Brown HE, Person CE, Kirchmayer LK, Stagg GW (1960) Digital calculation of 3-phase short circuits by matrix method. Transactions of the American Institute of Electrical Engineers. Part III: Power apparatus and systems, vol 79, No. 3, pp 1277–1281

    Google Scholar 

  15. Brown H, Carter G, Happ H, Person C (1963) Power flow solution by impedance matrix iterative method. IEEE transactions on power apparatus and systems, vol 82, No. 65, pp 1–10

    Article  Google Scholar 

  16. Brown HE, Carter GK, Happ HH, Person CE (1968) Z-matrix algorithms in load-flow programs. IEEE transactions on power apparatus and systems, vol PAS-87, No. 3, pp 807–814

    Article  Google Scholar 

  17. Ou TC, Lin WM (2009) A novel Z-matrix algorithm for distribution power flow solution. In: PowerTech, 2009 IEEE Bucharest, pp 1–8

  18. He J, Zhou B, Zhang Q, Zhao Y, Liu J (2012) An improved power flow algorithm for distribution networks based on Z-bus algorithm and forward/backward sweep method. In: 2012 international conference on control engineering and communication technology (ICCECT), pp 1–4

  19. Chiang HD, Zhao TQ, Deng JJ, Koyanagi K (2014) Convergence/divergence analysis of implicit Z-bus power flow for general distribution networks. In: 2014 IEEE international symposium on circuits and systems (ISCAS), pp 1808–1811

  20. Zhao TQ, Chiang HD, Koyanagi K (2016) Convergence analysis of implicit Z-bus power flow method for general distribution networks with distributed generators. IET generation, transmission distribution, vol 10, No. 2, pp 412–420

  21. Yang NC (2016) Three-phase power flow calculations using direct Z-bus method for large-scale unbalanced distribution networks. IET generation, transmission distribution, vol 10, No. 4, pp 1048–1055

    Article  Google Scholar 

  22. Taylor D, Treece J (1967) Load flow analysis by the Gauss-Seidel method. Symposium on power systems, load flow analysis. University of Manchester Institute of Science and Technology, Manchester, UK

  23. Ness JV (1959) Iteration methods for digital load flow studies. Power apparatus and systems. Transactions of the American Institute of Electrical Engineers, vol 78, pp 583–588

  24. Tinney WF, Hart CE (1967) Power flow solution by Newton’s method. IEEE transactions on power apparatus and systems, vol PAS-86, No. 11, pp 1449–1460

    Article  Google Scholar 

  25. Cheng CFZ (1997) A modified Newton method for radial distribution system power flow analysis. IEEE Trans Power Syst 12(1):389–397

    Google Scholar 

  26. Garcia P, Pereira J, Carneiro S, Da Costa VM, Martins N (2000) Three-phase power flow calculations using the current injection method. IEEE Trans Power Syst 15(2):508–514

    Article  Google Scholar 

  27. Li Y, Luo Y, Zhang B, Mao C (2011) A modified Newton-Raphson power flow method considering wind power. In: Power and Energy Engineering Conference (APPEEC), 2011 Asia-Pacific, pp 1–5

  28. Sameni A, Nassif AB, Opathella C, Venkatesh B (2012) A modified Newton-Raphson method for unbalanced distribution systems. In: 2012 IEEE international conference on smart grid engineering (SGE), pp 1–7

  29. Derakhshandeh SY, Pourbagher R (2016) Application of high-order Newton-like methods to solve power flow equations. IET Gener Trans Distrib 10(8):1853–1859

    Article  Google Scholar 

  30. Teng JH (2002) A modified Gauss-Seidel algorithm of three-phase power flow analysis in distribution networks. Int J Electr Power Energy Syst 24(2):97–102

    Article  MathSciNet  Google Scholar 

  31. Maffei A, Iannelli L, Glielmo L (2015) A colored Gauss-Seidel approach for the distributed network flow problem. In: 2015 54th IEEE conference on decision and control (CDC), pp 4934–4939

  32. Laughton MA, Davies MWH (1964) Numerical techniques in solution of power-system load-flow problems. In: Proceedings of the institution of electrical engineers, vol 111, No. 9, pp 1575–1588

    Article  Google Scholar 

  33. Stott B (1974) Review of load-flow calculation methods. Proc IEEE 62(7):916–929

    Article  Google Scholar 

  34. Gómez-Expósito A, Conejo AJ, Cañizares C (2008) Electric energy systems: analysis and operation. CRC Press, Boca Raton

    Book  Google Scholar 

  35. Yi-Shan Z, Hsiao-Dong C (2010) Fast Newton-FGMRES solver for large-scale power flow study. IEEE Trans Power Syst 25(2):769–776

    Article  Google Scholar 

  36. Idema R, Lahaye D, Vuik K, van der Sluis L (2010) Fast Newton load flow. IEEE PES Transmission and Distribution, pp 1–7

  37. Idema R, Lahaye DJ, Vuik C, Van der Sluis L (2012) Scalable Newton-Krylov solver for very large power flow problems. IEEE Trans Power Syst 27(1):390–396

    Article  Google Scholar 

  38. Idema R, Papaefthymiou G, Lahaye D, Vuik C, van der Sluis L (2013) Towards faster solution of large power flow problems. IEEE Trans Power Syst 28(4):4918–4925

    Article  Google Scholar 

  39. Knoll D, Keyes D (2004) Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J Comput Phys 193(2):357–397

    Article  MathSciNet  Google Scholar 

  40. De Leon F, Semlyen A (2002) Iterative solvers in the Newton power flow problem: preconditioners, inexact solutions, and partial jacobian updates. IEEE Proc—Gener Transm Distrib 149(4):479–484

    Article  Google Scholar 

  41. Chen Y, Shen C (2006) A Jacobian-free Newton-GMRES (m) method with adaptive preconditioner and its application for power flow calculations. IEEE Trans Power Syst 21(3):1096–1103

    Article  Google Scholar 

  42. Stott, B., Alsac, O.: Fast Decoupled Load Flow. IEEE transactions on power apparatus and systems, PAS-93, No. 3, pp 859–869

  43. Zimmerman RD, Chiang HD (1995) Fast decoupled power flow for unbalanced radial distribution systems. IEEE Trans Power Syst 10(4):2045–2052

    Article  Google Scholar 

  44. Lin WM, Teng JH (2000) Three-phase distribution network fast-decoupled power flow solutions. Int J Electr Power Energy Syst 22(5):375–380

    Article  Google Scholar 

  45. Bijwe PR, Abhijith B, Raju GKV (2009) Robust three phase fast decoupled power flow. In: Power systems conference and exposition, 2009. PSCE ’09. IEEE/PES, pp 1–5

  46. Wu F (1977) Theoretical study of the convergence of the fast decoupled load flow. IEEE transactions on power apparatus and systems, vol 96, No. 1, pp 268–275

    Article  Google Scholar 

  47. Monticelli A, Garcia A, Saavedra O (1990) Fast decoupled load flow: hypothesis, derivations, and testing. IEEE Trans Power Syst 5(4):1425–1431

    Article  Google Scholar 

  48. Stott B (1971) Effective starting process for Newton-Raphson load flows. In: Proceedings of the institution of electrical engineers, vol 118, No. 8, pp 983–987

    Article  Google Scholar 

  49. Iwamoto S, Tamura Y (1981) A load flow calculation method for ill-conditioned power systems. IEEE transactions on power apparatus and systems, vol 4, pp 1736–1743

    Article  Google Scholar 

  50. Schaffer MD, Tylavsky DJ (1988) A nondiverging polar-form Newton-based power flow. IEEE Trans Ind Appl 24(5):870–877

    Article  Google Scholar 

  51. Tripathy SC, Prasad GD, Malik OP, Hope GS (1982) Load-flow solutions for ill-conditioned power systems by a Newton-like method. IEEE Power Engineering Review, vol PER-2, No. 10, pp 25–26

    Article  Google Scholar 

  52. Thorp JS, Naqavi SA (1997) Load-flow fractals draw clues to erratic behaviour. IEEE Comput Appl Power 10(1):59–62

    Article  Google Scholar 

  53. Thorp JS, Naqavi SA, Chiang HD (1990) More load flow fractals. In: Proceedings of the 29th IEEE conference on decision and control, 1990, vol 6, pp. 3028–3030

  54. Sauer P (1981) Explicit load flow series and functions. IEEE Transactions on power apparatus and systems, vol PAS-100, No. 8, pp 3754–3763

    Article  Google Scholar 

  55. Xu W, Liu Y, Salmon J, Le T, Chang G (1998) Series load flow: a novel noniterative load flow method. IEEE Proc Gener Transm Distrib 145(3):251–256

    Article  Google Scholar 

  56. de Souza A, Junior C, Lima Lopes I, Leme R, Carpinteiro O (2007) Non-iterative load-flow method as a tool for voltage stability studies. IET Gener Transm Distrib 1(3):499–505

    Article  Google Scholar 

  57. Sachdev MS, Medicherla TKP (1977) A second order load flow technique. IEEE Trans Power Appar Syst 96(1):189–197

    Article  Google Scholar 

  58. Trias A (2012) The holomorphic embedding load flow method. In: Power and energy society general meeting, 2012 IEEE, San Diego, California, pp 1–8

  59. Trias A (2015) Fundamentals of the holomorphic embedding load-flow method. ArXiv e-prints (1509), 02,421

  60. Trias A, Marín JL (2016) The holomorphic embedding loadflow method for dc power systems and nonlinear dc circuits. IEEE Trans Circuits Syst I: Regul Pap 63(2):322–333

    Article  MathSciNet  Google Scholar 

  61. Subramanian MK, Feng Y, Tylavsky D (2013) PV bus modeling in a holomorphically embedded power-flow formulation. North American Power Symposium (NAPS) 2013, pp 1–6

  62. Rao S, Feng Y, Tylavsky DJ, Subramanian MK (2015) The holomorphic embedding method applied to the power-flow problem. IEEE Transactions on Power Systems PP, No. 99, pp 1–13

  63. Ladevèze P, Simmonds J (1999) Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation., Mechanical engineering seriesSpringer, New York

    Book  Google Scholar 

  64. Borzacchiello D, Malik M, Chinesta F, García-Blanco R, Diez P (2016) Unified formulation of a family of iterative solvers for power systems analysis. Electr Power Syst Res 140:201–208

    Article  Google Scholar 

  65. Zhu J, Abur A (2006) Identification of errors in power flow controller parameters. In: International Conference on probabilistic methods applied to power systems, 2006. PMAPS 2006, pp 1–6

  66. Chen J, Liao Y (2012) State estimation and power flow analysis of power systems. J Comput 7(3):685

    Google Scholar 

  67. Amini MH, Ilić MD, Karabasoglu O (2015) DC power flow estimation utilizing bayesian-based lmmse estimator. In: 2015 IEEE power energy society general meeting, pp 1–5

  68. Rouhani M, Mohammadi M, Kargarian A (2016) Parzen window density estimator-based probabilistic power flow with correlated uncertainties. IEEE Trans Sustain Energy 7(3):1170–1181

    Article  Google Scholar 

  69. Rathinam M, Petzold LR (2000) An iterative method for simulation of large scale. In: Proceedings of the 39th IEEE conference on decision and control, Sydney 2000, pp 4630–4635

  70. Galbally D, Fidkowski K, Willcox K, Ghattas O (2010) Non-linear model reduction for uncertainty quantification in large-scale inverse problems. Int J Numer Methods Eng 81(12):1581–1608

    MathSciNet  MATH  Google Scholar 

  71. Chaturantabut S, Sorensen D (2009) Discrete empirical interpolation for nonlinear model reduction. In: Proceedings of the 48th IEEE Conference on decision and control, 2009 held jointly with the 2009 28th Chinese control conference. CDC/CCC 2009, pp 4316–4321

  72. Chaturantabut S, Sorensen D (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5):2737–2764

    Article  MathSciNet  Google Scholar 

  73. Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Math 339(9):667–672

    Article  MathSciNet  Google Scholar 

  74. Wirtz D, Sorensen D, Haasdonk B (2014) A-posteriori error estimation for DEIM reduced nonlinear dynamical systems. SIAM J Sci Comput 1–31

  75. Ammar A, Chinesta F, Cueto E (2011) Coupling finite elements and proper generalized decompositions. Int J Multiscale Comput Eng 9(1):17–33

    Article  Google Scholar 

  76. Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 199(25–28):1872–1880

    Article  MathSciNet  Google Scholar 

  77. Mozolevski I, Prudhomme S (2015) Goal-oriented error estimation based on equilibrated-flux reconstruction for finite element approximations of elliptic problems. Comput Methods Appl Mech Eng 288:127–145. Error Estimation and adaptivity for nonlinear and time-dependent problems

  78. Florentin E, Díez P (2012) Adaptive reduced basis strategy based on goal oriented error assessment for stochastic problems. Comput Methods Appl Mech Eng 225–228:116–127

    Article  MathSciNet  Google Scholar 

  79. García-Blanco R, Borzacchiello D, Chinesta F, Diez P (2016) Monitoring a PGD solver for parametric power flow problems with goal-oriented error assessment (article in review). Int J Numer Methods

  80. Borkowska B (1974) Probabilistic load flow. IEEE transactions on power apparatus and systems, vol PAS-93, No. 3, pp 752–759

  81. Dopazo JF, Klitin OA, Sasson AM (1975) Stochastic load flows. IEEE Trans Power Apparat Syst 94(2):299–309

    Article  Google Scholar 

  82. Li G, Zhang XP (2009) Comparison between two probabilistic load flow methods for reliability assessment. In: 2009 IEEE power energy society general meeting, pp 1–7

  83. Fang S, Cheng H, Xu G, Yao L, Zeng P (2014) A stochastic power flow method based on polynomial normal transformation and quasi monte carlo simulation. In: 2014 international conference on power system technology (POWERCON), pp 75–82

  84. Allan RN, Al-Shakarchi MRG (1977) Probabilistic techniques in A.C. load-flow analysis. In: Proceedings of the Institution of Electrical Engineers, vol 124, No. 2, pp 154–160

    Article  Google Scholar 

  85. Zhang P, Lee ST (2004) Probabilistic load flow computation using the method of combined cumulants and gram-charlier expansion. IEEE Trans Power Syst 19(1):676–682

    Article  Google Scholar 

  86. Su CL (2005) Probabilistic load-flow computation using point estimate method. IEEE Trans Power Syst 20(4):1843–1851

    Article  MathSciNet  Google Scholar 

  87. Rau N, Necsulescu C (1990) Solution of probabilistic load flow equations using combinatorics. Int J Electr Power Energy Syst 12(3):156–164

    Article  Google Scholar 

  88. Yu H, Chung CY, Wong KP, Lee HW, Zhang JH (2009) Probabilistic load flow evaluation with hybrid latin hypercube sampling and cholesky decomposition. IEEE Trans Power Syst 24(2):661–667

    Article  Google Scholar 

  89. Dommel H, Tinney W (1968) Optimal power flow solutions. IEEE transactions on power apparatus and systems, vol PAS-87, No. 10, pp 1866–1876

  90. Sun DI, Ashley B, Brewer B, Hughes A, Tinney WF Optimal power flow by Newton approach. IEEE transactions on power apparatus and systems, vol PAS-103, No. 10, pp 2864–2880

    Article  Google Scholar 

  91. Georgilakis P, Hatziargyriou N (2013) Optimal distributed generation placement in power distribution networks: models, methods, and future research. IEEE Trans Power Syst 28(3):3420–3428

    Article  Google Scholar 

  92. Shareef SDM, Kumar TV (2014) A review on models and methods for optimal placement of distributed generation in power distribution system. Int J Educ Appl Res 4:161–169

    Google Scholar 

  93. Martinez JA, Guerra G (2012) Optimum placement of distributed generation in three-phase distribution systems with time varying load using a Monte Carlo approach. In: Power and Energy Society General Meeting, 2012 IEEE, San Diego, California, pp 1–7

  94. Atwa Y, El-Saadany E (2011) Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems. Renew Power Generat IET 5(1):79–88

    Article  Google Scholar 

  95. Griffin T, Tomsovic K, Law A (2000) Placement of dispersed generation systems for reduced losses. In: Proceedings of the 33rd Hawaii international conference on system sciences 2000, pp 1–9

  96. Yong T, Lasseter RH (2000) Stochastic optimal power flow: formulation and solution. In: Power engineering society summer meeting, 2000. IEEE, vol 1, pp 237–242

  97. Willis HL (2000) Analytical methods and rules of thumb for modeling dg-distribution interaction. In: Power engineering society summer meeting, 2000. IEEE, vol 3, pp 1643–1644

  98. Acharya N, Mahat P, Mithulananthan N (2006) An analytical approach for DG allocation in primary distribution network. Int J Elect Power Energy Syst 28(10):669–678

    Article  Google Scholar 

  99. Rau NS, Wan YH (1994) Optimum location of resources in distributed planning. IEEE Trans Power Syst 9(4):2014–2020

    Article  Google Scholar 

  100. El-Khattam W, Hegazy YG, Salama MMA (2003) Stochastic power flow analysis of electrical distributed generation systems. In: Power engineering society general meeting, 2003, IEEE, vol 2, p 1144

  101. Kim JO, Park SK, Park KW, Singh C (1998) Dispersed generation planning using improved hereford ranch algorithm. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence, pp 0–5

  102. Mithulananthan N, Oo T, Phu LV (2004) Distributed generator in power distribution placement system using genetic algorithm to reduce losses. Thammasat Int J Sci Technol 9(3)

  103. Gandomkar M, Vakilian M, Ehsan M (2005) A combination of genetic algorithm and simulated annealing for optimal dg allocation in distribution networks. In: Canadian conference on electrical and computer engineering 2005, pp 645–648

  104. Kim KH, Lee YJ, Rhee SB, Lee SK, You SK (2002) Dispersed generator placement using fuzzy-ga in distribution systems. In: Power engineering society summer meeting, 2002 IEEE, vol 3, pp 1148–1153

  105. Favuzza S, Graditi G, Ippolito M, Sanseverino E (2007) Optimal electrical distribution systems reinforcement planning using gas micro turbines by dynamic ant colony search algorithm. IEEE Trans Power Syst 22(2):580–587

    Article  Google Scholar 

  106. Nara K, Hayashi Y, Ikeda K, Ashizawa T (2001) Application of Tabu search to optimal placement of distributed generators, pp 918–923. IEEE

  107. Abido M (2002) Optimal power flow using particle swarm optimization. Int J Electr Power Energy Syst 24(7):563–571

    Article  Google Scholar 

  108. Huneault M, Galiana F (1991) A survey of the optimal power flow literature. IEEE Trans Power Syst 6(2):762–770

    Article  Google Scholar 

  109. Frank S, Steponavice I, Rebennack S (2012) Optimal power flow: a bibliographic survey I. Energy Syst 3(3):221–258

    Article  Google Scholar 

  110. Chen P, Chen Z, Bak-Jensen B (2008) Probabilistic load flow: a review. In: Third international conference on electric utility deregulation and restructuring and power technologies, 2008. DRPT 2008, pp 1586–1591

  111. Pinnau R. In: W Schilders, H Vorst, J Rommes (eds) Model order reduction: theory, research aspects and applications, Mathematics in Industry, vol 13

  112. Sirovich L (1987) Turbulence and the dynamics of coherent structures. I–III. Quart Appl Math 45:561–590

    Article  MathSciNet  Google Scholar 

  113. Rios R, Espinosa J, Mejı’a C (2010) A multi-dimensional residual functional for obtaining the proper orthogonal decomposition coefficients in model reduction. In: ANDESCON, 2010 IEEE

  114. Chaturantabut S, Sorensen D (2009) Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media. Math Comput Model Dyn Syst

  115. Ward JB (1949) Equivalent circuits for power-flow studies. AIEE Trans Power Apparat Syst 68(9):373–382

    Google Scholar 

  116. Parrilo P, Lall S, Paganini F, Verghese GC, Lesieutre B, Marsden J (1999) Model reduction for analysis of cascading failures in power systems. In: Proceedings of the American control conference, 1999, vol 6, pp 4208–4212

  117. Hinze M, Kunkel M (2012) Discrete empirical interpolation in POD model order reduction of drift-diffusion equations in electrical networks. In: Michielsen B, Poirier JR (eds) Scientific computing in electrical engineering SCEE 2010, mathematics in industry. Springer, Berlin, pp 423–431

    Chapter  Google Scholar 

  118. Hochman A, Bond BN, White JK (2011) A stabilized discrete empirical interpolation method for model reduction of electrical, thermal, and microelectromechanical systems. In: Proceedings of the 48th Design Automation Conference on - DAC ’11, ACM Press, New York, USA, p 540

  119. Lin G, Elizondo M, Lu S, Wan X (2014) Uncertainty quantification in dynamic simulations of large-scale power system models using the high-order probabilistic collocation method on sparse grids. Int J Uncertain Quantif 4(3):185–204

    Article  MathSciNet  Google Scholar 

  120. Zhang H, Li P (2013) Application of sparse-grid technique to chance constrained optimal power flow. Gener Transm Distrib IET 7(5):491–499

    Article  Google Scholar 

  121. Tang J, Ni F, Ponci F, Monti A (2015) Dimension-adaptive sparse grid interpolation for uncertainty quantification in modern power systems: probabilistic power flow. In: IEEE Transactions on power systems, PP, No. 99, pp 1–13

  122. Zhang Z, Nguyen HD, Turitsyn K, Daniel L (2015) Probabilistic power flow computation via low-rank and sparse tensor recovery. IEEE Trans Power Syst

  123. Chinesta F, Leygue A, Bordeu F, Aguado J, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20(1)

    Article  MathSciNet  Google Scholar 

  124. Chinesta F, Ammar A, Cueto E (2005) On the use of proper generalized decompositions for multidimensional models. Revue européenne des éléments finis 8:1–12

    Google Scholar 

  125. Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404

    Article  Google Scholar 

  126. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350

    Article  MathSciNet  Google Scholar 

  127. Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) Pgd-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20(1):31–59

    Article  MathSciNet  Google Scholar 

  128. García-Blanco R, Borzacchiello D, Chinesta F, Diez P (2016) A reduced order modeling approach for optimal allocation of distributed generation in power distribution systems. In: 2016 IEEE International energy conference (ENERGYCON), Leuven, Belgium

  129. Borzacchiello D, Chinesta F, García-Blanco R, Diez P (2016) Introduction to the proper generalized decomposition for the solution of the parametrized power equations. Submitted

  130. Power systems test case archive [resources]. http://www2.ee.washington.edu/research/pstca/

  131. Lambert T, Gilman P, Lilienthal P (2006) Micropower system modeling with HOMER. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The first two authors acknowledge the financial support of Ministerio de Economía y Competitividad, grant DPI2014-51844-C2-2-R. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Díez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Blanco, R., Díez, P., Borzacchiello, D. et al. Algebraic and Parametric Solvers for the Power Flow Problem: Towards Real-Time and Accuracy-Guaranteed Simulation of Electric Systems. Arch Computat Methods Eng 25, 1003–1026 (2018). https://doi.org/10.1007/s11831-017-9223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-017-9223-6

Keywords

Navigation