Skip to main content

Advertisement

Log in

Different Kinds of Maximum Power Point Tracking Control Method for Photovoltaic Systems: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In modern years due to rising environmental issues such as energy cost and greenhouse gas emission have motivated new research into alternative methods of generation of electrical power. A vast deal of new research and enlargement for the renewable energy photovoltaic (PV) system. The PV module is conducted to search out non-polluting and renewable sources. New inventions are in development and exploring the perfection of solar cells to increase the efficiency and reduce the cost of power in per peak watt. The analysis of different kinds of control methods in PV system according to reviewed previous studies, shows that the most useful method is a hybrid technique as compared to other maximum power point tracking (MPPT) control methods. MPPT control method used to optimize the output of solar PV system with variable inputs such as solar radiations and temperature. The MPPT may include the use of a different DC–DC converter and also some different MPPT algorithms such as current based MPPT. Multi-input energy systems for the hybrid wind/solar energy systems need to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Reisi AR, Moradi MH, Jamasb S (2013) Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review. Renew Sustain Energy Rev 19:433–443

    Article  Google Scholar 

  2. Ameli MT, Moslehpour S, Shamlo M (2008) Economical load distribution in power networks that include hybrid solar power plants. Electr Power Syst Res 78(7):1147–1152

    Article  Google Scholar 

  3. Hua C, Shen C (May 1998) Study of maximum power tracking techniques and control of DC/DC converters for photovoltaic power system. In: 29th annual IEEE power electronics specialists conference, 1998. PESC 98 Record, vol 1. IEEE, pp 86–93

  4. Lim YH, Hamill DC (2000) Simple maximum power point tracker for photovoltaic arrays. Electron Lett 36(11):1

    Google Scholar 

  5. Enrique JM, Andújar JM, Bohórquez MA (2010) A reliable, fast and low cost maximum power point tracker for photovoltaic applications. Sol Energy 84(1):79–89

    Article  Google Scholar 

  6. Salas V, Olias E, Barrado A, Lazaro A (2006) Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Sol Energy Mater Sol Cells 90(11):1555–1578

    Article  Google Scholar 

  7. Iyasere E, Tatlicioglu E, Dawson DM (June 2010) Back stepping PWM control for maximum power tracking in photovoltaic array systems. In: American control conference (ACC). IEEE, pp 3561–3565

  8. Chowdhury SR, Saha H (2010) Maximum power point tracking of partially shaded solar photovoltaic arrays. Sol Energy Mater Sol Cells 94(9):1441–1447

    Article  Google Scholar 

  9. De Cesare G, Caputo D, Nascetti A (2006) Maximum power point tracker for portable photovoltaic systems with resistive-like load. Sol Energy 80(8):982–988

    Article  Google Scholar 

  10. Chekired F, Mellit A, Kalogirou SA, Larbes C (2014) Intelligent maximum power point trackers for photovoltaic applications using FPGA chip: a comparative study. Sol Energy 101:83–99

    Article  Google Scholar 

  11. Subudhi B, Pradhan R (2013) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energy 4(1):89–98

    Article  Google Scholar 

  12. Stauth JT, Seeman MD, Kesarwani K (2013) Resonant switched-capacitor converters for sub-module distributed photovoltaic power management. IEEE Trans Power Electron 28(3):1189–1198

    Article  Google Scholar 

  13. Diallo D, Belkacem F, Berthelot E (May 2007) Design and control of a low power DC–DC converter fed by a photovoltaic array. In: IEEE international electric machines and drives conference, 2007. IEMDC’07, vol 2. IEEE, pp 1288–1293

  14. Nordin AHM, Omar AM (June 2011) Modeling and simulation of photovoltaic (PV) array and maximum power point tracker (MPPT) for grid-connected PV system. In: 3rd International symposium & exhibition in sustainable energy & environment (ISESEE), 2011. IEEE, pp 114–119

  15. Li S, Gao X, Wang L, Liu S (2013) A novel maximum power point tracking control method with variable weather parameters for photovoltaic systems. Sol Energy 97:529–536

    Article  Google Scholar 

  16. Messai A, Mellit A, Guessoum A, Kalogirou SA (2011) Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation. Sol Energy 85(2):265–277

    Article  Google Scholar 

  17. Shaiek Y, Smida MB, Sakly A, Mimouni MF (2013) Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators. Sol Energy 90:107–122

    Article  Google Scholar 

  18. Kouchaki A, Iman-Eini H, Asaei B (2013) A new maximum power point tracking strategy for PV arrays under uniform and non-uniform insolation conditions. Sol Energy 91:221–232

    Article  Google Scholar 

  19. Gao X, Li S, Gong R (2013) Maximum power point tracking control strategies with variable weather parameters for photovoltaic generation systems. Sol Energy 93:357–367

    Article  Google Scholar 

  20. Moradi MH, Tousi SR, Nemati M, Basir NS, Shalavi N (2013) A robust hybrid method for maximum power point tracking in photovoltaic systems. Sol Energy 94:266–276

    Article  Google Scholar 

  21. Raj JCM, Jeyakumar AE (2014) A two stage successive estimation based maximum power point tracking technique for photovoltaic modules. Sol Energy 103:43–61

    Article  Google Scholar 

  22. Liu YH, Chen JH, Huang JW (2014) Global maximum power point tracking algorithm for PV systems operating under partially shaded conditions using the segmentation search method. Sol Energy 103:350–363

    Article  Google Scholar 

  23. Dounis AI, Kofinas P, Papadakis G, Alafodimos C (2015) A direct adaptive neural control for maximum power point tracking of photovoltaic system. Sol Energy 115:145–165

    Article  Google Scholar 

  24. Liu YH, Chen JH, Huang JW (2015) A review of maximum power point tracking techniques for use in partially shaded conditions. Renew Sustain Energy Rev 41:436–453

    Article  Google Scholar 

  25. Kuperman A, Averbukh M, Lineykin S (2013) Maximum power point matching versus maximum power point tracking for solar generators. Renew Sustain Energy Rev 19:11–17

    Article  Google Scholar 

  26. Khan MJ, Chatterji S, Mathew L, Sharma A (2014) A survey of various maximum power point tracking techniques used in solar photovoltaic system, vol 283. Excel India Publishers, New Delhi, pp 283–288

  27. Faranda R, Leva S, Maugeri V (July 2008) MPPT techniques for PV systems: energetic and cost comparison. In: Power and energy society general meeting-conversion and delivery of electrical energy in the 21st century, 2008 IEEE. IEEE, pp 1–6

  28. Shenoy PS, Kim KA, Johnson BB, Krein PT (2013) Differential power processing for increased energy production and reliability of photovoltaic systems. IEEE Trans Power Electron 28(6):2968–2979

    Article  Google Scholar 

  29. Powell DM, Winkler MT, Goodrich A, Buonassisi T (2013) Modeling the cost and minimum sustainable price of crystalline silicon photovoltaic manufacturing in the United States. IEEE J Photo Voltai 3(2):662–668

    Article  Google Scholar 

  30. Bodur M, Ermiş M (Apr 1994) Maximum power point tracking for low power photovoltaic solar panels. In: 1994. Proceedings, 7th Mediterranean electrotechnical conference. IEEE, pp 758–761

  31. Kitano T, Matsui M, Xu DH (2001) Power sensor-less MPPT control scheme utilizing power balance at DC link-system design to ensure stability and response. In: Industrial electronics society, 2001. IECON’01. The 27th annual conference of the IEEE, vol 2. IEEE, pp 1309–1314

  32. Bhide P, Bhat SR (June 1992) Modular power conditioning unit for photovoltaic applications. In: Power electronics specialists conference, 1992. PESC’92 record, 23rd annual IEEE. IEEE, pp 708–713

  33. Sugimoto H, Dong H (Aug 1997) A new scheme for maximum photovoltaic power tracking control. In: Proceedings of the power conversion conference-Nagaoka 1997, vol 2. IEEE, pp 691–696

  34. Chiang SJ, Chang KT, Yen CY (1998) Residential photovoltaic energy storage system. IEEE Trans Industr Electron 45(3):385–394

    Article  Google Scholar 

  35. Bleijs JAM, Gow JA (2001) Fast maximum power point control of current-fed DC–DC converter for photovoltaic arrays. Electron Lett 37(1):5–6

    Article  Google Scholar 

  36. Hou CL, Wu J, Zhang M, Yang JM, Li JP (Apr 2004) Application of adaptive algorithm of solar cell battery charger. In: Proceedings of the 2004 IEEE international conference on electric utility deregulation, restructuring and power technologies, 2004. (DRPT 2004), vol 2. IEEE, pp 810–813

  37. Kim RY, Lai JS, York B, Koran A (2009) Analysis and design of maximum power point tracking scheme for thermoelectric battery energy storage system. IEEE Trans Industr Electron 56(9):3709–3716

    Article  Google Scholar 

  38. El-Shibini MA, Rakha HH (Apr 1989) Maximum power point tracking technique. In: Electrotechnical conference, 1989. Proceedings. ‘Integrating research, industry and education in energy and communication engineering’, MELECON’89, Mediterranean. IEEE, pp 21–24

  39. De Brito MA, Junior LG, Sampaio LP, Canesin CA (Sept 2011) Main maximum power point tracking strategies intended for photovoltaics. In: Power electronics conference (COBEP), 2011 Brazilian. IEEE, pp 524–530

  40. De Brito MA, Sampaio LP, Junior LG, Canesin CA (June 2011) Evaluation of MPPT techniques for photovoltaic applications. In: 2011 IEEE international symposium on industrial electronics (ISIE). IEEE, pp 1039–1044

  41. Khaehintung N, Pramotung K, Tuvirat B, Sirisuk P (Nov 2004) RISC-microcontroller built-in fuzzy logic controller of maximum power point tracking for solar-powered light-flasher applications. In: 30th annual conference of IEEE industrial electronics society, 2004. IECON 2004, vol 3. IEEE, pp 2673–2678

  42. Veerachary M, Senjyu T, Uezato K (2003) Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Trans Industr Electron 50(4):749–758

    Article  Google Scholar 

  43. Mahmoud AMA, Mashaly HM, Kandil SA, El Khashab H, Nashed MNF (2000) Fuzzy logic implementation for photovoltaic maximum power tracking. In: Industrial electronics society, 2000. IECON 2000. 26th annual conference of the IEEE, vol 1. IEEE, pp 735–740

  44. Patcharaprakiti N, Premrudeep-Reechacharn S (2002) Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system. In: Power engineering society winter meeting, 2002. IEEE, vol 1. IEEE, pp 372–377

  45. Won CY, Kim DH, Kim SC, Kim WS, Kim HS (June 1994) A new maximum power point tracker of photovoltaic arrays using fuzzy controller. In: Power electronics specialists conference, PESC’94 record, 25th annual IEEE. IEEE, pp 396–403

  46. Hiyama T, Kouzuma S, Imakubo T (1995) Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Trans Energy Convers 10(2):360–367

    Article  Google Scholar 

  47. Ho BM, Chung HS, Lo WL (2004) Use of system oscillation to locate the MPP of PV panels. IEEE Power Electron Lett 2(1):1–5

    Article  Google Scholar 

  48. Ishaque K, Salam Z, Amjad M, Mekhilef S (2012) An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation. IEEE Trans Power Electron 27(8):3627–3638

    Article  Google Scholar 

  49. Miyatake M, Veerachary M, Toriumi F, Fujii N, Ko H (2011) Maximum power point tracking of multiple photovoltaic arrays: a PSO approach. IEEE Trans Aerosp Electron Syst 47(1):367–380

    Article  Google Scholar 

  50. Liu YH, Huang SC, Huang JW, Liang WC (2012) A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions. IEEE Trans Energy Convers 27(4):1027–1035

    Article  Google Scholar 

  51. Jiang LL, Maskell DL, Patra JC (2013) A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build 58:227–236

    Article  Google Scholar 

  52. Chai-Ead N, Aungkulanon P, Luangpaiboon P (Mar 2011) Bees and firefly algorithms for noisy non-linear optimisation problems. In: Proceedings of the international multi conference of engineering and computer scientists, vol 2

  53. Logeswaran T, SenthilKumar A (2014) A review of maximum power point tracking algorithms for photovoltaic systems under uniform and non-uniform irradiances. Energy Proc 54:228–235

    Article  Google Scholar 

  54. Tilahun SL, Ong HC (2012) Modified firefly algorithm. J Appl Math 2012:12

  55. Younis MA, Khatib T, Najeeb M, Ariffin AM (2012) An improved maximum power point tracking controller for PV systems using artificial neural network. Przegląd Elektrotech 88(3b):116–121

    Google Scholar 

  56. Kobayashi K, Takano I, Sawada Y (2005) A study of a two-stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions. Electr Eng Jpn 153(4):39–49

    Article  Google Scholar 

  57. D’Souza NS, Lopes LA, Liu X (June 2005) An intelligent maximum power point tracker using peak current control. In: Power electronics specialists conference, 2005. PESC’05. IEEE 36th. IEEE, p 172

  58. D’Souza NS, Lopes LA, Liu X (2010) Comparative study of variable size perturbation and observation maximum power point trackers for PV systems. Electr Power Syst Res 80(3):296–305

    Article  Google Scholar 

  59. Koizumi H, Kurokawa K (June 2005) A novel maximum power point tracking method for PV module integrated converter. In: Power electronics specialists conference, 2005. PESC’05. IEEE 36th. IEEE, pp 2081–2086

  60. Jain S, Agarwal V (2004) A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems. IEEE Power Electron Lett 2(1):16–19

    Article  Google Scholar 

  61. Tafticht T, Agbossou K (May 2004) Development of a MPPT method for photovoltaic systems. In: Canadian conference on electrical and computer engineering, 2004, vol 2. IEEE, pp 1123–1126

  62. Yang CY, Hsieh CY, Feng FK, Chen KH (2012) Highly efficient analog maximum power point tracking (AMPPT) in a photovoltaic system. IEEE Trans Circuits Syst I Regul Pap 59(7):1546–1556

    Article  MathSciNet  Google Scholar 

  63. Krstić M (2000) Performance improvement and limitations in extremum seeking control. Syst Control Lett 39(5):313–326

    Article  MathSciNet  MATH  Google Scholar 

  64. Krstić M, Wang HH (2000) Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 36(4):595–601

    Article  MathSciNet  MATH  Google Scholar 

  65. Yu H, Ozguner U (2002) Extremum-seeking control strategy for ABS system with time delay. In: American control conference, 2002. Proceedings of the 2002, vol 5. IEEE, pp 3753–3758

  66. Wang HH, Yeung S, Krstić M (2000) Experimental application of extremum seeking on an axial-flow compressor. IEEE Trans Control Syst Technol 8(2):300–309

    Article  Google Scholar 

  67. Killingsworth NJ, KrstiĆ M (2006) PID tuning using extremum seeking: online, model-free performance optimization. IEEE Control Syst 26(1):70–79

    Article  MathSciNet  Google Scholar 

  68. Leyva R, Alonso C, Queinnec I, Cid-Pastor A, Lagrange D, Martinez-Salamero L (2006) MPPT of photovoltaic systems using extremum-seeking control. IEEE Trans Aerosp Electron Syst 42(1):249–258

    Article  Google Scholar 

  69. Brunton SL, Rowley CW, Kulkarni SR, Clarkson C (2010) Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control. IEEE Trans Power Electron 25(10):2531–2540

    Article  Google Scholar 

  70. Lei P, Li Y, Seem JE (2011) Sequential ESC-based global MPPT control for photovoltaic array with variable shading. IEEE Trans Sustain Energy 2(3):348–358

    Article  Google Scholar 

  71. Bazzi AM, Krein PT (2011) Concerning “maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control”. IEEE Trans Power Electron 26(6):1611–1612

    Article  Google Scholar 

  72. Midya P, Krein PT, Turnbull J, Reppa R, Kimball J (June 1996) Dynamic maximum power point tracker for photovoltaic applications. In: Power electronics specialists conference, 1996. PESC’96 record, 27th annual IEEE, vol 2. IEEE, pp 1710–1716

  73. Hohm DP, Ropp ME (2003) Comparative study of maximum power point tracking algorithms. Prog Photovoltaics Res Appl 11(1):47–62

    Article  Google Scholar 

  74. http://powerelectronics.com/power_semiconductors/power_microinverters.computer.controlled_improve_04 09/. Powerelectronics.com. Retrieved 2011-06-10

  75. Chu CC, Chen CL (2009) Robust maximum power point tracking method for photovoltaic cells: a sliding mode control approach. Sol Energy 83(8):1370–1378

    Article  Google Scholar 

  76. Ardani K, Seif D, Davidson C, Morris J, Truitt S, Torbert R, Margolis R (June 2013) Preliminary non-hardware (“soft”) cost-reduction Roadmap for residential and small commercial solar photovoltaics, 2013–2020. In: 2013 IEEE 39th photovoltaic specialists conference (PVSC). IEEE, pp 3463–3468

  77. Khan BH (2009) Non-conventional energy resources, 4th edn. Tata McGraw-Hill Publishing Co Ltd, New Delhi, pp 1–214

    Google Scholar 

  78. Olalla C, Deline C, Maksimovic D (2014) Performance of mismatched PV systems with submodule integrated converters. IEEE J Photovolt 4(1):396–404

    Article  Google Scholar 

  79. Hu H, Harb S, Kutkut NH, Shen ZJ, Batarseh I (2013) A single-stage microinverter without using eletrolytic capacitors. IEEE Trans Power Electron 28(6):2677–2687

    Article  Google Scholar 

  80. Schaef C, Kesarwani K, Stauth JT (Mar 2013) A coupled-inductor multi-level ladder converter for sub-module PV power management. In: Applied power electronics conference and exposition (APEC), 2013 28th annual IEEE. IEEE, pp 732–737

  81. Ferdous SM, Mohammad MA, Nasrullah F, Saleque AM, Muttalib AZM (Dec 2012) Design and simulation of an open voltage algorithm based maximum power point tracker for battery charging PV system. In: 2012 7th international conference on electrical & computer engineering (ICECE). IEEE, pp 908–911

  82. Rodriguez C, Amaratunga GA (2007) Analytic solution to the photovoltaic maximum power point problem. IEEE Trans Circuits Syst I Regul Pap 54(9):2054–2060

    Article  MathSciNet  Google Scholar 

  83. Amrouche B, Belhamel M, Guessoum A (2007) Artificial intelligence based P&O MPPT method for photovoltaic systems. In: Revue des Energies Renouvelables ICRESD-07 Tlemcen, pp 11–16

  84. Ramaprabha R, Mathur BL (2011) Intelligent controller based maximum power point tracking for solar PV system. Int J Comput Appl 12(10):37–41

    Google Scholar 

  85. Larbes C, Cheikh SA, Obeidi T, Zerguerras A (2009) Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renew Energy 34(10):2093–2100

    Article  Google Scholar 

  86. Iqbal A, Abu-Rub H, Ahmed SM (Dec 2010) Adaptive neuro-fuzzy inference system based maximum power point tracking of a solar PV module. In: 2010 IEEE international energy conference and exhibition (EnergyCon). IEEE, pp 51–56

  87. Qin S, Pilawa-Podgurski RC (Mar 2013) Sub-module differential power processing for photovoltaic applications. In: 2013 28th annual IEEE applied power electronics conference and exposition (APEC). IEEE, pp 101–108

  88. Poshtkouhi S, Biswas A, Trescases O (Feb 2012) DC–DC converter for high granularity, sub-string MPPT in photovoltaic applications using a virtual-parallel connection. In: 2012 27th annual IEEE applied power electronics conference and exposition (APEC). IEEE, pp 86–92

  89. Esram T, Chapman PL (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers EC 22(2):439

    Article  Google Scholar 

  90. Abdelsalam AK, Massoud AM, Ahmed S, Enjeti P (2011) High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans Power Electron 26(4):1010–1021

    Article  Google Scholar 

  91. Esram T, Krein PT, Kuhn BT, Balog RS, Chapman PL (Nov 2008) Power electronics needs for achieving grid-parity solar energy costs. In: Energy 2030 conference, 2008. ENERGY 2008. IEEE. IEEE, pp 1–5

  92. Koutroulis E, Blaabjerg F (2013) Design optimization of transformer less grid-connected PV inverters including reliability. IEEE Trans Power Electron 28(1):325–335

    Article  Google Scholar 

  93. Matsui M, Kitano T, Xu DH, Yang ZQ (1999) A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC link. In: Industry applications conference, 1999. 34th IAS annual meeting. Conference record of the 1999 IEEE, vol 2. IEEE, pp 804–809

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Junaid Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.J., Mathew, L. Different Kinds of Maximum Power Point Tracking Control Method for Photovoltaic Systems: A Review. Arch Computat Methods Eng 24, 855–867 (2017). https://doi.org/10.1007/s11831-016-9192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9192-1

Keywords

Navigation