Skip to main content
Log in

Simulation-Based Classification; a Model-Order-Reduction Approach for Structural Health Monitoring

  • S.I.: Machine learning in computational mechanics
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

We present a model-order-reduction approach to simulation-based classification, with particular application to structural health monitoring. The approach exploits (1) synthetic results obtained by repeated solution of a parametrized mathematical model for different values of the parameters, (2) machine-learning algorithms to generate a classifier that monitors the damage state of the system, and (3) a reduced basis method to reduce the computational burden associated with the model evaluations. Furthermore, we propose a mathematical formulation which integrates the partial differential equation model within the classification framework and clarifies the influence of model error on classification performance. We illustrate our approach and we demonstrate its effectiveness through the vehicle of a particular physical companion experiment, a harmonically excited microtruss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Amplitudes and phases are estimated using the Matlab function fit [42], which relies on Levenberg–Marquardt algorithm.

  2. See, e.g., [43, Chap. 3.6.2] for the Poisson’s ratio and the webpage http://pubchem.ncbi.nlm.nih.gov for the density.

  3. We recall that standardization of data implies that we train the classifier based on the modified features \({\hat{z}}_q = \frac{ z_q - m_q^{\mathrm{bk}} }{ std_q^{\mathrm{bk}} }\) where \(m_q^{\mathrm{bk}}\), \(std_q^{\mathrm{bk}}\) are respectively the sample mean and the sample standard deviation of the training set for all classes.

  4. We consider here the case of static data to not deal with the dependence on frequency.

References

  1. Farrar CR, Worden K (2012) Structural health monitoring: a machine learning perspective. Wiley, New York

    Book  Google Scholar 

  2. Amir N, Barzelay O, Yefet A, Pechter T (2010) Condenser tube examination using acoustic pulse reflectometry. J Eng Gas Turbines Power 132(1):014501

    Article  Google Scholar 

  3. Sharp D, Campbell D (1997) Leak detection in pipes using acoustic pulse reflectometry. Acta Acust United Acust 83(3):560–566

    Google Scholar 

  4. Dawson B (1976) Vibration condition monitoring techniques for rotating machinery. Shock Vib Dig 8(12):3

    Article  Google Scholar 

  5. Staszewski W, Boller C, Tomlinson GR (2004) Health monitoring of aerospace structures: smart sensor technologies and signal processing. Wiley, New York

    Google Scholar 

  6. Willis S (2009) Olm: a hands-on approach. In: ICAF 2009, Bridging the gap between theory and operational practice, pp 1199–1214. Springer

  7. Benedettini O, Baines T, Lightfoot H, Greenough R (2009) State-of-the-art in integrated vehicle health management. Proc Inst Mech Eng Part G J Aerosp Eng 223(2):157–170

    Article  Google Scholar 

  8. Ortiz EM, Clark GJ, Babbar A, Vian JL, Syrmos VL, Arita MM (2008) Multi source data integration for aircraft health management. In: Aerospace conference, 2008 IEEE, pp 1–12. IEEE

  9. Rytter A (1993) Vibration based inspection of civil engineering structures. Ph.D. thesis, Ph.D. dissertation

  10. Worden K, Dulieu-Barton J (2004) Damage identification in systems and structures. Int J Struct Health Monit 3:85–98

    Article  Google Scholar 

  11. Farrar CR, Doebling SW, Nix DA (2001) Vibration-based structural damage identification. Philos Trans R Soc Lond A Math Phys Eng Sci 359(1778):131–149

    Article  MATH  Google Scholar 

  12. Hurtado JE (2004) An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory. Struct Saf 26(3):271–293

    Article  Google Scholar 

  13. Sanayei M, Onipede O (1991) Damage assessment of structures using static test data. AIAA J 29(7):1174–1179

    Article  Google Scholar 

  14. Sanayei M, Saletnik MJ (1996) Parameter estimation of structures from static strain measurements. i: Formulation. J Struct Eng 122(5):555–562

    Article  Google Scholar 

  15. Sanayei M, Saletnik MJ (1996) Parameter estimation of structures from static strain measurements. ii: Error sensitivity analysis. J Struct Eng 122(5):563–572

    Article  Google Scholar 

  16. Cawley P, Adams R (1979) The location of defects in structures from measurements of natural frequencies. J Strain Anal Eng Des 14(2):49–57

    Article  Google Scholar 

  17. Salawu O (1997) Detection of structural damage through changes in frequency: a review. Eng Struct 19(9):718–723

    Article  Google Scholar 

  18. Wenzel H (2008) Health monitoring of bridges. Wiley, New York

    Google Scholar 

  19. Fan W, Qiao P (2011) Vibration-based damage identification methods: a review and comparative study. Struct Health Monit 10(1):83–111

    Article  Google Scholar 

  20. Au SK, Zhang FL, Ni YC (2013) Bayesian operational modal analysis: theory, computation, practice. Comput Struct 126:3–14

    Article  Google Scholar 

  21. Zang C, Imregun M (2001) Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection. J Sound Vib 242(5):813–827

    Article  Google Scholar 

  22. Basudhar A, Missoum S (2009) A sampling-based approach for probabilistic design with random fields. Comput Meth Appl Mech Eng 198(47):3647–3655

    Article  MATH  Google Scholar 

  23. Mainini L, Willcox K (2015) Surrogate modeling approach to support real-time structural assessment and decision making. AIAA J 53(6):1612–1626

    Article  Google Scholar 

  24. Friswell M (1995) Finite element model updating in structural dynamics, vol 38. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  25. Hurtado JE, Alvarez DA (2003) Classification approach for reliability analysis with stochastic finite-element modeling. J Struct Eng 129(8):1141–1149

    Article  Google Scholar 

  26. Lecerf M, Allaire D, Willcox K (2015) Methodology for dynamic data-driven online flight capability estimation. AIAA J 53(10):3073–3087

    Article  Google Scholar 

  27. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv (CSUR) 41(3):15

    Article  Google Scholar 

  28. Helton JC (1993) Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliab Eng Syst Saf 42(2):327–367

    Article  Google Scholar 

  29. Mourelatos ZP, Kuczera R, Latcha M (2006) An efficient monte carlo reliability analysis using global and local metamodels. In: Proceedings of 11th AIAA/ISSMO multidisciplinary analysis and optimization conference, September, Portsmouth, VA

  30. Basudhar A, Missoum S (2008) Adaptive explicit decision functions for probabilistic design and optimization using support vector machines. Comput Struct 86(19):1904–1917

    Article  Google Scholar 

  31. Basudhar A, Missoum S (2010) An improved adaptive sampling scheme for the construction of explicit boundaries. Struct Multidiscip Optim 42(4):517–529

    Article  Google Scholar 

  32. Basudhar A, Missoum S, Sanchez AH (2008) Limit state function identification using support vector machines for discontinuous responses and disjoint failure domains. Probab Eng Mech 23(1):1–11

    Article  Google Scholar 

  33. Hesthaven JS, Rozza G, Stamm B (2015) Certified reduced basis methods for parametrized partial differential equations. SpringerBriefs in Mathematics, Bilbao

    MATH  Google Scholar 

  34. Quarteroni A, Manzoni A, Negri F (2015) Reduced basis methods for partial differential equations: an introduction, vol 92. Springer, Berlin

    MATH  Google Scholar 

  35. Rozza G, Huynh DP, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng 15(3):229–275

    Article  MathSciNet  MATH  Google Scholar 

  36. Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  37. Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501

    Article  MathSciNet  MATH  Google Scholar 

  38. Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Article  MathSciNet  MATH  Google Scholar 

  39. Hinrichsen D, Pritchard AJ (1986) Stability radii of linear systems. Syst Control Lett 7(1):1–10

    Article  MathSciNet  MATH  Google Scholar 

  40. Zlobec S (1988) Characterizing optimality in mathematical programming models. Acta Appl Math 12(2):113–180

    Article  MathSciNet  MATH  Google Scholar 

  41. Young WC, Budynas RG (2002) Roark’s formulas for stress and strain, vol 7. McGraw-Hill, New York

    Google Scholar 

  42. MATLAB: version 8.5 (R2015a). The MathWorks Inc., Natick, Massachusetts (2015)

  43. Harris HG, Sabnis G (1999) Structural modeling and experimental techniques. CRC Press, Boca Raton

    Book  Google Scholar 

  44. Prudhomme S, Oden JT (1999) On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput Meth Appl Mech Eng 176(1):313–331

    Article  MathSciNet  MATH  Google Scholar 

  45. Rubinstein RY, Kroese DP (2011) Simulation and the Monte Carlo method, vol 707. Wiley, New York

    MATH  Google Scholar 

  46. Fishman G (2013) Monte Carlo: concepts, algorithms, and applications. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  47. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, vol 2. Springer, Berlin

    Book  MATH  Google Scholar 

  48. James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer, Berlin

    Book  MATH  Google Scholar 

  49. Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge

    MATH  Google Scholar 

  50. Vapnik VN (1998) Statistical learning theory, vol 1. Wiley, New York

    MATH  Google Scholar 

  51. Porsching T (1985) Estimation of the error in the reduced basis method solution of nonlinear equations. Math Comput 45(172):487–496

    Article  MathSciNet  MATH  Google Scholar 

  52. Binev P, Cohen A, Dahmen W, DeVore R, Petrova G, Wojtaszczyk P (2011) Convergence rates for greedy algorithms in reduced basis methods. SIAM J Math Anal 43(3):1457–1472

    Article  MathSciNet  MATH  Google Scholar 

  53. Cohen A, DeVore R (2015) Approximation of high-dimensional parametric pdes. Acta Numer 24:1–159

    Article  MathSciNet  MATH  Google Scholar 

  54. Maday Y, Patera AT, Rovas DV (2001) A blackbox reduced-basis output bound method for noncoercive linear problems. In: Cioranescu D, Lions JL (eds) Studies in mathematics and its applications. Elsevier Science B.V., New York, pp 533–569

    Google Scholar 

  55. Casenave F, Ern A, Lelièvre T (2014) Accurate and online-efficient evaluation of the a posteriori error bound in the reduced basis method. ESAIM Math Model Numer Anal 48(01):207–229

    Article  MathSciNet  MATH  Google Scholar 

  56. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  57. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  58. Rifkin R, Klautau A (2004) In defense of one-vs-all classification. J Mach Learn Res 5:101–141

    MathSciNet  MATH  Google Scholar 

  59. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press, Boca Raton

    MATH  Google Scholar 

  60. Bishop CP (1995) Neural networks for pattern recognition. Oxford university press, Oxford

    MATH  Google Scholar 

  61. Tsymbal A (2004) The problem of concept drift: definitions and related work. Computer Science Department, Trinity College Dublin, vol 106, p 2

  62. Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1):69–101

    Google Scholar 

  63. Moreno-Torres JG, Raeder T, Alaiz-RodríGuez R, Chawla NV, Herrera F (2012) A unifying view on dataset shift in classification. Pattern Recognit 45(1):521–530

    Article  Google Scholar 

  64. Steinwart I (2005) Consistency of support vector machines and other regularized kernel classifiers. IEEE Trans Inf Theory 51(1):128–142

    Article  MathSciNet  MATH  Google Scholar 

  65. Sniedovich M (2010) A bird’s view of info-gap decision theory. J Risk Financ 11(3):268–283

    Article  Google Scholar 

  66. Wald A (1945) Statistical decision functions which minimize the maximum risk. Ann Math 46(2):265–280

    Article  MathSciNet  MATH  Google Scholar 

  67. Franceschini G, Macchietto S (2008) Model-based design of experiments for parameter precision: state of the art. Chem Eng Sci 63(19):4846–4872

    Article  Google Scholar 

  68. Pukelsheim F (1993) Optimal design of experiments, vol 50. SIAM, Philadelphia

    MATH  Google Scholar 

  69. Joshi S, Boyd S (2009) Sensor selection via convex optimization. IEEE Trans Signal Process 57(2):451–462

    Article  MathSciNet  Google Scholar 

  70. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  71. Eftang JL, Patera AT (2013) Port reduction in parametrized component static condensation: approximation and a posteriori error estimation. Int J Numer Methods Eng 96(5):269–302

    MathSciNet  MATH  Google Scholar 

  72. Huynh DBP, Knezevic DJ, Patera AT (2013) A static condensation reduced basis element method: approximation and a posteriori error estimation. ESAIM Math Model Numer Anal 47(01):213–251

    Article  MathSciNet  MATH  Google Scholar 

  73. Smetana K (2015) A new certification framework for the port reduced static condensation reduced basis element method. Comput Meth Appl Mech Eng 283:352–383

    Article  MathSciNet  Google Scholar 

  74. Devroye L, Györfi L, Lugosi G (2013) A probabilistic theory of pattern recognition, vol 31. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Bernard Haasdonk (University of Stuttgart) for fruitful discussions. This work was supported by OSD/AFOSR/MURI Grant FA9550-09-1-0613, ONR Grant N00014-11-1-0713, and the MIT-Singapore International Design Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Taddei.

Ethics declarations

Ethical Standard

This work was supported by OSD/AFOSR/MURI Grant FA9550-09-1-0613, ONR Grant N00014-11-1-0713, and the MIT-Singapore International Design Center.

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1: Existence and Uniqueness of the Solutions to the Monitoring Problems

In this appendix, we discuss existence and uniqueness of solutions to the monitoring problems and indeed we develop an explicit—through not readily evaluated—expression for \(g^\mathrm{opt,bk}\). For the sake of clarity, we recap the definition of \(P_{w^{\mathrm{bk}}}\) in (28),

$$\begin{aligned} P_{w^{\mathrm{bk}}}( A) = \int _{{\mathcal {P}}^{\mathrm{bk}}} \mathbbm {1}_{A}(\mu ') \,w^{\mathrm{bk}}(\mu ') \, d\mu ', \quad A \subset {\mathcal {P}}^{\mathrm{bk}}, \end{aligned}$$

and of \(P_{(\mu ,\xi )}^{\mathrm{exp}}\) in (44),

$$\begin{aligned} P_{(\mu ,\xi )}^{\mathrm{exp}}( A\times B ) = \int _{ {\mathcal {P}}^{\mathrm{bk}} \times {\mathcal {V}} } \; \mathbbm {1}_A(\mu ) \, \mathbbm {1}_B(\xi ) \,w^{\mathrm{bk}}(\mu ') \, p_{\xi } (\xi ') \, d\mu ', \, d\xi '. \quad A \subset {\mathcal {P}}^{\mathrm{bk}}, \; \; B \subset {\mathcal {V}}. \end{aligned}$$

We assume here that \(P_{w^{\mathrm{bk}}}\) and \(P_{(\mu ,\xi )}^{\mathrm{exp}}\) are Borel-measurable, that is they are defined on all open sets of \({\mathcal {P}}^{\mathrm{bk}}\) and \({\mathcal {P}}^{\mathrm{exp}}\), respectively. A sufficient condition for which \(P_{w^{\mathrm{bk}}}\) and \(P_{(\mu ,\xi )}^{\mathrm{exp}}\) are Borel-measurable is that \(w^{\mathrm{bk}} \in L^1({\mathcal {P}}^{\mathrm{bk}})\) and \(p_{\xi } \in L^1({\mathcal {V}})\). We further recall the random pair

$$\begin{aligned} (Z^{\mathrm{bk}},Y) := ({\mathbf {z}}^{\mathrm{bk}}(\mu ), f^{\mathrm{dam}}(\mu ) ), \qquad \mu \sim P_{w^{\mathrm{bk}}}, \end{aligned}$$

with probability distribution \(P_{(Z^{\mathrm{bk}},Y)}\), and

$$\begin{aligned} (Z^{\mathrm{exp}},Y) := ({\mathbf {z}}^{\mathrm{exp}}(\mu ,\xi ), f^{\mathrm{dam}}(\mu ) ), \qquad (\mu ,\xi ) \sim P_{(\mu ,\xi )}^{\mathrm{exp}}, \end{aligned}$$

with probability distribution \(P_{(Z^{\mathrm{exp}},Y)}\).

Next Lemma shows that if \({\mathbf {z}}^{\mathrm{bk}}\) and \({\mathbf {z}}^{\mathrm{exp}}\) are continuous, \(f^{\mathrm{dam}}\) is Borel-measurable, and \(P_{w^{\mathrm{bk}}}\) and \(P_{(\mu ,\xi )}^{\mathrm{exp}}\) are Borel-measurable, then \(P_{(Z^{\mathrm{bk}},Y)}\) and \(P_{(Z^{\mathrm{exp}},Y)}\) are also Borel-measurable.

Lemma 1

Suppose that

  1. 1.

    the probability measures \(P_{w^{\mathrm{bk}}}\) in (28) and \(P_{(\mu ,\xi )}^{\mathrm{exp}}\) in (44) are Borel-measurable;

  2. 2.

    the bk features \({\mathbf {z}}^{\mathrm{bk}}: {\mathcal {P}}^{\mathrm{bk}} \rightarrow {\mathbb {R}}^Q\) and the experimental features \({\mathbf {z}}^{\mathrm{exp}}: {\mathcal {P}}^{\mathrm{exp}} \rightarrow {\mathbb {R}}^Q\) are continuous;

  3. 3.

    the discrete function \(f^{\mathrm{dam}}: {\mathcal {P}}^{\mathrm{bk}} \rightarrow \{1,\ldots ,K\}\) is Borel-measurable.

Then, the probability measures \(P_{(Z^{\mathrm{bk}},Y)}\) and \(P_{(Z^{\mathrm{exp}},Y)}\) are Borel-measurable on \({\mathbb {R}}^Q \times \{1,\ldots ,K\}\).

Proof

We only prove that \(P_{(Z^{\mathrm{bk}},Y)}\) is Borel-measurable. The proof of the measurability of \(P_{(Z^{\mathrm{exp}},Y)}\) is analogous. Let \(A \subset {\mathbb {R}}^Q\) be an open set and let \(k \in \{1,\ldots ,K\}\). We must show that \(P_{(Z^{\mathrm{bk}},Y)}( A \times \{ k \} )\) is well-defined. By construction, we have that

$$\begin{aligned} P_{(Z^{\mathrm{bk}},Y)}( A \times \{ k \} ) = \int _{(Z^{\mathrm{bk}},Y)^{-1} \left( A \times \{ k \} \right) } \, w^{\mathrm{bk}}(\mu ) \, d\mu . \end{aligned}$$

As a result, we must show that

$$\begin{aligned} \begin{array}{rl} (Z^{\mathrm{bk}},Y)^{-1} \left( A \times \{ k \} \right) \, & = \, \{ \mu \in {\mathcal {P}}^{\mathrm{bk}}: \; {\mathbf {z}}^{\mathrm{bk}}(\mu ) \in A, \; f^{\mathrm{dam}}(\mu )= k \}\\ & = \left( {\mathbf {z}}^{\mathrm{bk}} \right) ^{-1} (A) \, \cap \left( f^{\mathrm{dam}} \right) ^{-1} (k)\\ \end{array} \end{aligned}$$

is a Borel set. Since \({\mathbf {z}}^{\mathrm{bk}}\) is continuous and A is open, \(\left( {\mathbf {z}}^{\mathrm{bk}} \right) ^{-1} (A)\) is also open. On the other hand, by assumption, \(\left( f^{\mathrm{dam}} \right) ^{-1} (k)\) is Borel. Thesis follows by recalling that the intersection of Borel sets is also Borel. \(\square\)

Lemma 1 can be used to prove the following important result related to the existence and uniqueness of solutions to (20) and to (19). We state here only the result for (20). An analogous discussion applies also to the monitoring problem (19).

Proposition 2

The optimal solution \(g^\mathrm{opt, bk}\) to (20) is given by

$$\begin{aligned} g^\mathrm{opt, bk}({\mathbf {z}}) = \hbox {arg} \max _{ k=1,\ldots ,K } \; P_{(Z^{\mathrm{bk}},Y)}(Y=k| Z^{\mathrm{bk}}={\mathbf {z}}). \end{aligned}$$
(55)

Here, \(P_{(Z^{\mathrm{bk}},Y)} ( Y= k | \, Z^{\mathrm{bk}} = {\mathbf {z}} )\) denotes the conditional probability of the event \(\{Y= k\}\) given \(\{ Z^{\mathrm{bk}} = {\mathbf {z}} \}\).

Furthermore, if there exists \(\epsilon >0\) such that

$$\begin{aligned} P_{Z^{\mathrm{bk}}} \left( P_{(Z^{\mathrm{bk}},Y)}(Y=g^\mathrm{opt, bk}({\mathbf {z}}) | Z^{\mathrm{bk}}={\mathbf {z}}) \ge \max _{ k \ne g^\mathrm{opt, bk}({\mathbf {z}}) } \, P_{(Z^{\mathrm{bk}},Y)}(Y=k | Z^{\mathrm{bk}}={\mathbf {z}}) + \epsilon \right) = 1, \end{aligned}$$
(56)

then any solution g to (20) satisfies \(g^\mathrm{opt, bk}({\mathbf {z}}) = g({\mathbf {z}})\) for \(P_{Z^{\mathrm{bk}}}\)-almost every \({\mathbf {z}} \in {\mathbb {R}}^Q\).

Proof

We first show that (55) is measurable. Recalling [74, Theorem A.24 page 586], since \(P_{(Z^{\mathrm{bk}},Y)}\) is Borel-measurable, if we denote by \(P_{Z^{\mathrm{bk}}}\) the corresponding marginal distribution, there exists for \(P_{Z^{\mathrm{bk}}}\)—almost-every \({\mathbf {z}} \in {\mathbb {R}}^Q\) and for \(k=1,\ldots ,K\) a measurable function \(\xi _k^{\mathrm{bk}} : {\mathbb {R}}^Q \rightarrow {\mathbb {R}}\) such that \(\xi _k^{\mathrm{bk}}({\mathbf {z}}) = P_{(Z^{\mathrm{bk}},Y)}(Y=k | Z^{\mathrm{bk}}={\mathbf {z}})\). Recalling that the pointwise maximum of measurable functions is also measurable, this implies that, under the hypotheses of Lemma 1, the function \(g^\mathrm{opt, bk}\) in (55) is measurable.

We now observe that

$$\begin{aligned} \begin{array}{rl} R^{\mathrm{bk}}(g) & = \int _{{\mathbb {R}}^Q \times \{1,\ldots ,K\} } \, {\mathcal {L}}^{(0,1)} ( g({\mathbf {z}}), y) \, d P_{(Z^{\mathrm{bk}}, Y)}({\mathbf {z}}), y ) = \int _{{\mathbb {R}}^Q} \, \sum _{k \ne g({\mathbf {z}}) } \, P_{(Z^{\mathrm{bk}}, Y)}( Y=k | Z^{\mathrm{bk}}= {\mathbf {z}})) \, d P_{Z^{\mathrm{bk}}}({\mathbf {z}})\\ & = 1 - \int _{{\mathbb {R}}^Q} \, \, P_{(Z^{\mathrm{bk}}, Y)}( Y=g( {\mathbf {z}} ) | Z^{\mathrm{bk}}= {\mathbf {z}})) \, d P_{Z^{\mathrm{bk}}}({\mathbf {z}})\\& \ge 1 - \int _{{\mathbb {R}}^Q} \, \max _k \, P_{(Z^{\mathrm{bk}}, Y)}( Y=k | Z^{\mathrm{bk}}= {\mathbf {z}})) \, d P_{Z^{\mathrm{bk}}}({\mathbf {z}}) = R^{\mathrm{bk}}( g^\mathrm{opt,bk} ).\\ \end{array} \end{aligned}$$

Since \(g^\mathrm{opt,bk}\) is measurable, this implies that \(g^\mathrm{opt,bk}\) is a solution to (20).

Let g be a classifier such that \(R^{\mathrm{bk}}( g^\mathrm{opt,bk} ) = R^{\mathrm{bk}}( g)\). Using the same reasoning as before, it is possible to verify that

$$\begin{aligned} R^{\mathrm{bk}}( g) = R^{\mathrm{bk}}( g^\mathrm{opt,bk} ) \, + \, \int _{{\mathbb {R}}^Q} \, \left( P_{(Z^{\mathrm{bk}},Y)}(Y=g^\mathrm{opt, bk}({\mathbf {z}}) | Z^{\mathrm{bk}}={\mathbf {z}}) - \, P_{(Z^{\mathrm{bk}},Y)}(Y=g({\mathbf {z}}) | Z^{\mathrm{bk}}={\mathbf {z}}) \right) \, d P_{Z^{\mathrm{bk}}}({\mathbf {z}}). \end{aligned}$$

Recalling (56), we find

$$\begin{aligned} R^{\mathrm{bk}}( g) \ge R^{\mathrm{bk}}( g^\mathrm{opt,bk} ) \, + \epsilon \int _{{\mathbb {R}}^Q} \, {\mathcal {L}}^{(0,1)} (g ({\mathbf {z}}), g^\mathrm{opt,bk} ({\mathbf {z}}) ) \, d \, P_{Z^{\mathrm{bk}}}({\mathbf {z}}). \end{aligned}$$

Then, we must have

$$\begin{aligned} \int _{{\mathbb {R}}^Q} \, {\mathcal {L}}^{(0,1)} (g ({\mathbf {z}}), g^\mathrm{opt,bk} ({\mathbf {z}}) ) \, d \, P_{Z^{\mathrm{bk}}}({\mathbf {z}})=0, \end{aligned}$$

which implies that \(g({\mathbf {z}}) =g^\mathrm{opt,bk} ({\mathbf {z}})\) for \(P_{Z^{\mathrm{bk}}}\)-almost every \({\mathbf {z}} \in {\mathbb {R}}^Q\). \(\square\)

Appendix 2: Parametric-Affine Expansion for the Microtruss Problem

Below, we report the parameter-dependent coefficients \(\{ {\varTheta }_q\}_{q=1}^{10}\) and the parameter-independent bilinear forms \(\{ a^q\}_{q=1}^{10}\) associated with the microtruss problem considered in this work.

$$\begin{aligned} {\varTheta }_q(f,\mu =[\alpha ,\beta ,E, s_L,s_R]) = \left\{ \begin{array}{ll} (1 + i \omega _f \beta ) E & q =1, \\ (-\omega _f^2 + i \omega _f \alpha ) \rho L^2 & q =2, \\ (1 + i \omega _f \beta ) s_L \, E & q =3, \\ (1 + i \omega _f \beta ) E & q =4,\\ (1 + i \omega _f \beta )s_L^{-1} \, E & q =5, \\ \end{array} \right. \qquad \left\{ \begin{array}{ll} (-\omega _f^2 + i \omega _f \alpha ) \rho L^2 s_L & q =6, \\ (1 + i \omega _f \beta ) s_R \, E & q =7, \\ (1 + i \omega _f \beta ) \, E & q =8,\\ (1 + i \omega _f \beta )s_R^{-1} \, E & q =9, \\ (-\omega _f^2 + i \omega _f \alpha ) \rho L^2 s_R & q =10, \\ \end{array} \right. \end{aligned}$$
(57a)

and

$$\begin{aligned} a^q(u,v) = \left\{ \begin{array}{ll} b_{{\varOmega }_1^{ref}}(u,v) & q =1 \\ m_{{\varOmega }_1^{ref}}(u,v) & q =2, \\ { \int _{{\varOmega }_2^{ref}} \, \frac{1-\nu }{(1+\nu )(1-2\nu )} \, \frac{\partial u_1}{ \partial x_1 } \, \frac{\partial v_1}{ \partial x_1 } \, + \, \frac{1}{2(1+\nu )} \, \frac{\partial u_2}{ \partial x_1 } \, \frac{\partial v_2}{ \partial x_1 }\, dx } & q =3, \\ { \int _{{\varOmega }_2^{ref}} \, \frac{\nu }{(1+\nu )(1-2\nu )} \, \left( \frac{\partial u_1}{ \partial x_1 } \frac{\partial v_2}{ \partial x_2 } + \frac{\partial u_2}{ \partial x_2 } \frac{\partial v_1}{ \partial x_1 } \right) \, + \, \frac{1}{2(1+\nu )} \left( \frac{\partial u_1}{ \partial x_2 }\frac{\partial v_2}{ \partial x_1 } + \frac{\partial u_2}{ \partial x_1 } \frac{\partial v_1}{ \partial x_2 } \right) \, dx} & q =4,\\ { \int _{{\varOmega }_2^{ref}} \, \frac{1-\nu }{(1+\nu )(1-2\nu )} \, \frac{\partial u_2}{ \partial x_2 } \, \frac{\partial v_2}{ \partial x_2 } \, + \, \frac{1}{2(1+\nu )} \, \frac{\partial u_1}{ \partial x_2 } \, \frac{\partial v_1}{ \partial x_2 } \, dx} & q =5, \\ m_{{\varOmega }_2^{ref}}(u,v) & q =6, \\ { \int _{{\varOmega }_3^{ref}} \, \frac{1-\nu }{2(1+\nu )(1-2\nu )} \, \frac{\partial u_1}{ \partial x_1 } \, \frac{\partial v_1}{ \partial x_1 } \, + \, \frac{1}{2(1+\nu )} \, \frac{\partial u_2}{ \partial x_1 } \, \frac{\partial v_2}{ \partial x_1 }\, dx } & q =7, \\ { \int _{{\varOmega }_3^{ref}} \, \frac{\nu }{(1+\nu )(1-2\nu )} \, \left( \frac{\partial u_1}{ \partial x_1 } \frac{\partial v_2}{ \partial x_2 } + \frac{\partial u_2}{ \partial x_2 } \frac{\partial v_1}{ \partial x_1 } \right) \, + \, \frac{1}{2(1 + \nu )} \left( \frac{\partial u_1}{ \partial x_2 }\frac{\partial v_2}{ \partial x_1 } + \frac{\partial u_2}{ \partial x_1 } \frac{\partial v_1}{ \partial x_2 } \right) \, dx } & q =8,\\ { \int _{{\varOmega }_3^{ref}} \, \frac{1-\nu }{(1 + \nu )(1-2\nu )} \, \frac{\partial u_2}{ \partial x_2 } \, \frac{\partial v_2}{ \partial x_2 } \, + \, \frac{1}{2(1 + \nu )} \, \frac{\partial u_1}{ \partial x_2 } \, \frac{\partial v_1}{ \partial x_2 } \, dx} & q =9, \\ m_{{\varOmega }_3^{ref}}(u,v) & q =10, \\ \end{array} \right. \end{aligned}$$
(57b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taddei, T., Penn, J.D., Yano, M. et al. Simulation-Based Classification; a Model-Order-Reduction Approach for Structural Health Monitoring. Arch Computat Methods Eng 25, 23–45 (2018). https://doi.org/10.1007/s11831-016-9185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9185-0

Navigation