Skip to main content
Log in

Coffee trees intercropped with common beans: An opportunity to regulate the aphid Toxoptera aurantii (Boyer de Fonscolombe) (Hemiptera: Aphididae) in coffee agroecosystems

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The coffee aphid Toxoptera aurantii (Boyer de Fonscolombe) (Hemiptera: Aphididae) causes direct feeding injuries and vectors the coffee ringspot virus (CoRSV) (Mononegavirales: Rhabdoviridae), which is more damaging to coffee plants. Coffee farmers have controlled this pest using synthetic pesticides. However, chemical control is ineffective and sometimes associated with resistance, environmental pollution, and pest resurgence, leading to the deterioration of agricultural ecosystem services. Therefore, there is a need to find more effective and safe biocontrol agents to keep this pest under the economic threshold. In that context, we installed six plots to compare the dynamics of aphid populations in coffee trees intercropped with common beans (Phaseolus vulgaris L., Fabales: Fabaceae) to coffee monoculture farming systems in open fields in the Southern Province of Rwanda. Results show a significant difference in infestations of coffee aphids. The population of aphids is higher in coffee monocultures than in intercropping systems. Our results also indicate that beneficial insects respond positively to the intercropping system with more species of natural enemies, mostly ladybird beetles (Coccinellidae), hoverflies (Syrphidae), and wasps (Vespidae) than in monocultures. No Hymenoptera were observed in coffee monoculture plots, indicating that common beans attract diverse natural enemies. Therefore, coffee trees intercropped with beans can help to maintain and diversify indigenous natural enemies in agroecosystems and regulate the aphid T. aurantii. We recommend future researchers use the Land Equivalent Ratio (LER) and compare these coffee farming systems to help people decide exactly what intercropping crops yield should be.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahamczyk S, Steudel B, Kessler M (2010) Sampling Hymenoptera along a precipitation gradient in tropical forests: the effectiveness of different coloured pan traps. Entomol Exp Appl 137:262–268

    Article  Google Scholar 

  • Altieri MA, Letourneau DK (1982) Vegetation management and biological control in agroecosystems. Crop Prot 1:405–430. https://doi.org/10.1016/0261-2194(82)90023-0

    Article  Google Scholar 

  • Altieri M, Nicholls C (2004) Biodiversity and pest management in agroecosystems, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Altieri MA, Francis CA, Van Schoonhoven A, Doll JD (1978) A review of insect prevalence in maize (Zea mays L.) and bean (Phaseolus vulgaris L.) polycultural systems. Field Crops Res 1:33–49

    Article  Google Scholar 

  • Altieri MA, Koohafkan P et al (2008) Enduring farms climate change, smallholders and traditional farming communities. Third World Network (TWN) Penang, George Town

    Google Scholar 

  • Avelino J, Ten Hoopen GM, DeClerck F (2011) Ecological mechanisms for pest and disease control in coffee and cacao agroecosystems of the neotropics. Ecosyst Serv Agric Agrofor Meas Paym Lond Earthscan 91–117

  • Bacon C (2005) Confronting the coffee crisis: can fair trade, organic, and specialty coffees reduce small-scale farmer vulnerability in Northern Nicaragua? World Dev 33:497–511. https://doi.org/10.1016/j.worlddev.2004.10.002

    Article  Google Scholar 

  • Bacon CM (2008) Confronting the coffee crisis: fair trade, sustainable livelihoods and ecosystems in Mexico and Central America. MIT Press, Cambridge

    Book  Google Scholar 

  • Balasubramanian V, Egli A (1986) The role of agroforestry in the farming systems in Rwanda with special reference to the Bugesera-Gisaka-Migongo (BGM) region. Agrofor Syst 4:271–289

    Article  Google Scholar 

  • Barrera JF (2008) Coffee pests and their management. In: Encyclopedia of Entomology. Springer, pp 961–998

  • Batista D, Silva DN, Vieira A et al (2017) Legitimacy and implications of reducing colletotrichum kahawae to subspecies in plant pathology. Front Plant Sci. https://doi.org/10.3389/fpls.2016.02051

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaupré A, Vega JR, Castañeda HE et al (2021) Pertinence of exotic and local green manures for sustainable maize polyculture in Oaxaca, Mexico. Renew Agric Food Syst 36:138–149. https://doi.org/10.1017/S1742170520000137

    Article  Google Scholar 

  • Bigirimana J, Uzayisenga B, Gut LJ (2019) Population distribution and density of Antestiopsis thunbergii (Hemiptera: Pentatomidae) in the coffee growing regions of Rwanda about climatic variables. Crop Prot 122:136–141

    Article  Google Scholar 

  • Brennan EB (2013) Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids. Biol Control 65:302–311

    Article  Google Scholar 

  • Bucagu C, Vanlauwe B, Giller KE (2013) Managing Tephrosia mulch and fertilizer to enhance coffee productivity on smallholder farms in the Eastern African Highlands. Eur J Agron 48:19–29

    Article  Google Scholar 

  • Carvalho CF, Carvalho SM, Souza B (2019) Coffee. Springer, Germany

    Google Scholar 

  • da Rosado M, C, Araújo GJ de, Pallini A, Venzon M, (2021) Cover crop intercropping increases biological control in coffee crops. Biol Control 160:104675. https://doi.org/10.1016/j.biocontrol.2021.104675

    Article  Google Scholar 

  • Daba G, Helsen K, Berecha G et al (2019) Seasonal and altitudinal differences in coffee leaf rust epidemics on coffee berry disease-resistant varieties in Southwest Ethiopia. Trop Plant Pathol 44:244–250. https://doi.org/10.1007/s40858-018-0271-8

    Article  Google Scholar 

  • Dantas J, Motta IO, Vidal LA et al (2021) A comprehensive review of the coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae)—a major pest for the coffee crop in Brazil and others Neotropical countries. Insects 12:1130

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawson JC, Huggins DR, Jones SS (2008) Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crops Res 107:89–101

    Article  Google Scholar 

  • De Souza HN, de Goede RG, Brussaard L et al (2012a) Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric Ecosyst Environ 146:179–196

    Article  Google Scholar 

  • de Souza HN, de Graaff J, Pulleman MM (2012b) Strategies and economics of farming systems with coffee in the Atlantic Rainforest Biome. Agrofor Syst 84:227–242. https://doi.org/10.1007/s10457-011-9452-x

    Article  Google Scholar 

  • Delvare G, Aberlenc H-P (1989) Les insectes d’Afrique et d’Amérique tropicale: clés pour la reconnaissance des familles. Editions Quae, Versailles

    Google Scholar 

  • Engel MS (2013) A ceraphronid wasp in Early Miocene amber from the Dominican Republic (Hymenoptera: Ceraphronidae). Novit Paleoentomol. https://doi.org/10.17161/np.v0i2.4573

    Article  Google Scholar 

  • Firempong S (1977) Biology of Toxoptera aurantii (Homoptera: Aphididae) on cocoa in Ghana. J Nat Hist 11:409–416. https://doi.org/10.1080/00222937700770321

    Article  Google Scholar 

  • Fürsch H (1997) Coccinellidae (Coleoptera) aus Rwanda. Bonn Zool BEITRAGE 47:13–30

    Google Scholar 

  • Gaitán AL, Cristancho MA, Castro Caicedo BL et al (2015) Compendium of coffee diseases and pests. APS Press The American Phytopathological Society, Saint Paul

    Google Scholar 

  • Gash AFJ (2012) Wheat nitrogen fertilisation effects on the performance of the cereal aphid metopolophium dirhodum. Agronomy 2:1–13. https://doi.org/10.3390/agronomy2010001

    Article  Google Scholar 

  • Gather J, Wollni M (2022) Setting the standard: does rainforest alliance Certification increase environmental and socio-economic outcomes for small-scale coffee producers in Rwanda? Appl Econ Perspect Policy 44:1807–1825. https://doi.org/10.1002/aepp.13307

    Article  Google Scholar 

  • Gold CS, Altieri MA, Bellotti AC (1989) The effects of intercropping and mixed varieties of predators and parasitoids of cassava whiteflies (Hemiptera: Aleyrodidae) in Colombia. Bull Entomol Res 79:115–121

    Article  Google Scholar 

  • Han B, Chen Z (2002) Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii. J Chem Ecol 28:2203–2219. https://doi.org/10.1023/A:1021045231501

    Article  CAS  PubMed  Google Scholar 

  • Harelimana A, Le Goff G, Rukazambuga DT, Hance T (2018) Coffee production systems: evaluation of intercropping system in coffee plantations in Rwanda. J Agric Sci. https://doi.org/10.5539/jas.v10n9p17

    Article  Google Scholar 

  • Harelimana A, Rukazambuga D, Hance T (2022) Pests and diseases regulation in coffee agroecosystems by management systems and resistance in changing climate conditions: a review. J Plant Dis Prot. https://doi.org/10.1007/s41348-022-00628-1

    Article  Google Scholar 

  • Harelimana A (2018) Consequences of varietal resistance of Coffea arabica L. and intercropping for the sustainable control of aphid Toxoptera aurantii (Hemiptera: Aphididae) in Rwanda. PhD Thesis, UCL-Université Catholique de Louvain

  • Jaramillo J, Muchugu E, Vega FE et al (2011) Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PloS one 6:e24528

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Jassogne L, van Asten PJA, Wanyama I, Baret PV (2013) Perceptions and outlook on intercropping coffee with banana as an opportunity for smallholder coffee farmers in Uganda. Int J Agric Sustain 11:144–158. https://doi.org/10.1080/14735903.2012.714576

    Article  Google Scholar 

  • Jha S, Bacon CM, Philpott SM et al (2014) Shade coffee: update on a disappearing refuge for biodiversity. Bioscience 64:416–428

    Article  Google Scholar 

  • Ju Q, Ouyang F, Gu S et al (2019) Strip intercropping peanut with maize for peanut aphid biological control and yield enhancement. Agric Ecosyst Environ 286:106682. https://doi.org/10.1016/j.agee.2019.106682

    Article  CAS  Google Scholar 

  • Katungi EM, Larochelle C, Mugabo JR, Buruchara R (2018) The effect of climbing bean adoption on the welfare of smallholder common bean growers in Rwanda. Food Secur 10:61–79. https://doi.org/10.1007/s12571-017-0753-4

    Article  Google Scholar 

  • Khan Z, Midega CA, Hooper A, Pickett J (2016) Push-pull: chemical ecology-based integrated pest management technology. J Chem Ecol 42:689–697

    Article  CAS  PubMed  Google Scholar 

  • Kiseve SM (2012) Evaluation of legume cover crops intercropped with coffee. PhD Thesis, University of Nairobi,

  • Kuyah S, Öborn I, Jonsson M (2017) Regulating ecosystem services delivered in agroforestry systems. In: Dagar JC, Tewari VP (eds) Agroforestry: anecdotal to modern science. Springer, Singapore, pp 797–815

    Chapter  Google Scholar 

  • Latigo-Ogenga MW, Baliddawa CW, Ampofo JKO (1993) Factors influencing the incidence of the black bean aphid, Aphis fabae Scop., on common beans intercropped with maize

  • Lyimo E, Schaedel M, Berntsen M, Kisingo A (2017) Effect of disease resistance on secondary herbivores: aphid abundance on hybrid and non-hybrid coffee varieties in the chagga homegardens. J Ecosyst Ecography 7:2

    Article  Google Scholar 

  • Mace KC, Mills NJ (2015) Response of walnut aphid populations to increasing foliar nitrogen content. Agric Entomol 17:277–284

    Article  Google Scholar 

  • Makaka A, Breen S, Binagwaho A (2012) Universal health coverage in Rwanda: a report of innovations to increase enrolment in community-based health insurance. The Lancet 380:S7. https://doi.org/10.1016/S0140-6736(13)60293-7

    Article  Google Scholar 

  • Mansion-Vaquié A, Wezel A, Ferrer A (2019) Wheat genotypic diversity and intercropping to control cereal aphids. Agric Ecosyst Environ 285:106604. https://doi.org/10.1016/j.agee.2019.106604

    Article  CAS  Google Scholar 

  • Michaud JP (1998) A review of the literature on Toxoptera citricida (Kirkaldy) (Homoptera: Aphididae). Fla Entomol 81:37–61. https://doi.org/10.2307/3495995

    Article  Google Scholar 

  • Mrosso F, Mwatawala M, Rwegasira G (2013) Functional responses of Cheilomenes propingua, C. lunata and C. sulphurea (Coleoptera: Coccinellidae) to predation on Aphis gossypii (Homoptera: Aphididae) in Eastern Tanzania. J Entomol 10:76–85

    Article  Google Scholar 

  • Mukashema A, Veldkamp A, Vrieling A (2014) Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network. Int J Appl Earth Obs Geoinformation 33:331–340. https://doi.org/10.1016/j.jag.2014.05.005

    Article  ADS  Google Scholar 

  • Nsengimana V, de Dieu NJ, Hagenimana T, Dekoninck W (2023) Impact of chemical fertilizers on diversity and abundance of soil-litter arthropod communities in coffee and banana plantations in southern Rwanda. Curr Res Environ Sustain 5:100215. https://doi.org/10.1016/j.crsust.2023.100215

    Article  Google Scholar 

  • Nuttman CV, Otieno M, Kwapong PK et al (2011) The utility of aerial pan-trapping for assessing insect pollinators across vertical strata. J Kans Entomol Soc 84:260–270

    Article  Google Scholar 

  • Nzeyimana I, Hartemink AE, de Graaff J (2013) Coffee farming and soil management in Rwanda. Outlook Agric 42:47–52. https://doi.org/10.5367/oa.2013.0118

    Article  Google Scholar 

  • Pak D, Iverson AL, Ennis KK et al (2015) Parasitoid wasps benefit from shade tree size and landscape complexity in Mexican coffee agroecosystems. Agric Ecosyst Environ 206:21–32

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (1996) Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem. Oecologia 108:577–582

    Article  ADS  CAS  PubMed  Google Scholar 

  • Perfecto I, Vandermeer J (2015) Coffee agroecology: a new approach to understanding agricultural biodiversity, ecosystem services and sustainable development. Routledge, London

    Book  Google Scholar 

  • Ramalho TO, Figueira AR, Sotero AJ et al (2014) Characterization of Coffee ringspot virus-Lavras: a model for an emerging threat to coffee production and quality. Virology 464:385–396

    Article  PubMed  Google Scholar 

  • Rezende MQ, Venzon M, dos Santos PS et al (2021) Extrafloral nectary-bearing leguminous trees enhance pest control and increase fruit weight in associated coffee plants. Agric Ecosyst Environ 319:107538. https://doi.org/10.1016/j.agee.2021.107538

    Article  Google Scholar 

  • Reznik SY, Voinovich ND, Samartsev KG (2020) Grandmaternal temperature effect on diapause induction in Trichogramma telengai (Hymenoptera: Trichogrammatidae). J Insect Physiol 124:104072

    Article  CAS  PubMed  Google Scholar 

  • Romero-Alvarado Y, Soto-Pinto L, García-Barrios L, Barrera-Gaytán JF (2002) Coffee yields and soil nutrients under the shades of Inga sp. vs. multiple species in Chiapas. Mexico Agrofor Syst 54:215–224

    Article  Google Scholar 

  • Rousselin A, Sauge M-H, Jordan M-O et al (2016) Nitrogen and water supplies affect peach tree–green peach aphid interactions: the key role played by vegetative growth. Agric for Entomol 18:367–375. https://doi.org/10.1111/afe.12168

    Article  Google Scholar 

  • Schmitz OJ, Barton BT (2014) Climate change effects on behavioral and physiological ecology of predator–prey interactions: Implications for conservation biological control. Biol Control 75:87–96. https://doi.org/10.1016/j.biocontrol.2013.10.001

    Article  Google Scholar 

  • Sekine T, Kanao K, Inawashiro S, Hori M (2021) Insect pest management by intercropping with leafy daikon (Raphanus sativus) in cabbage fields. Arthropod-Plant Interact 15:669–681

    Article  CAS  Google Scholar 

  • Siles P, Harmand J-M, Vaast P (2010) Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agrofor Syst 78:269–286

    Article  Google Scholar 

  • Soto-Pinto L, Perfecto I, Caballero-Nieto J (2002) Shade over coffee: its effects on berry borer, leaf rust and spontaneous herbs in Chiapas, Mexico. Agrofor Syst 55:37–45. https://doi.org/10.1023/A:1020266709570

    Article  Google Scholar 

  • Souza HN, Cardoso IM, Fernandes JM et al (2010) Selection of native trees for intercropping with coffee in the Atlantic Rainforest biome. Agrofor Syst 80:1–16

    Article  Google Scholar 

  • Tukahirwa EM, Coaker TH (1982) Effect of mixed cropping on some insect pests of brassicas; reduced Brevicoryne brassicae infestations and influences on epigeal predators and the disturbance of oviposition behaviour in Delia brassicae. Entomol Exp Appl 32:129–140

    Article  Google Scholar 

  • Van den Berg H, Cock MJW, Oduor GI, Onsongo EK (1993) Incidence of Helicoverpa armigera (Lepidoptera: Noctuidae) and its natural enemies on smallholder crops in Kenya. Bull Entomol Res 83:321–328

    Article  Google Scholar 

  • Venzon M, Rosado MC, Matiello Fadini MA et al (2005) The potential of NeemAzal for the control of coffee leaf pests. Crop Prot 24:213–219. https://doi.org/10.1016/j.cropro.2004.07.008

    Article  CAS  Google Scholar 

  • Waller JM, Bigger M, Hillocks RJ (2007) Coffee pests diseases and their management. CABI, Wallingford

    Book  Google Scholar 

  • Ye G-Y, Xiao Q, Chen M et al (2014) Tea: biological control of insect and mite pests in China. Biol Control 68:73–91. https://doi.org/10.1016/j.biocontrol.2013.06.013

    Article  Google Scholar 

Download references

Acknowledgements

Anastase Harelimana received a PhD scholarship from the Université Catholique de Louvain (UCL). The authors are grateful to Earth and Life Insitute and Biodiversity (ELIB) team members for their technical assistance. The authors also are grateful to Prof. Robert Black (University of Greenwich, UK, retired) for editing the English language in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastase Harelimana.

Ethics declarations

Competing interest

The authors have no conflicts of interest directly or indirectly related to this work.

Additional information

Handling Editor: Ek del-Val.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harelimana, A., Le Goff, G., Rukazambuga, D. et al. Coffee trees intercropped with common beans: An opportunity to regulate the aphid Toxoptera aurantii (Boyer de Fonscolombe) (Hemiptera: Aphididae) in coffee agroecosystems. Arthropod-Plant Interactions 18, 307–316 (2024). https://doi.org/10.1007/s11829-023-10031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-023-10031-8

Keywords

Navigation