Skip to main content
Log in

Adhesive secretion in Schizolobium parahyba (Vell.) Blake (Leguminosae: Caesalpinioideae): histochemical and morpho-functional characterization of this unusual feature in woody plants

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The legume tree Schizolobium parahyba from the Brazilian Atlantic Forest shows young aerial organs covered with a sticky exudate. Aiming to clarify the functional aspects of the sticky secretions, we performed analyses on the dynamics of secretion through the plant development and characterized the chemical nature of the exudates by histochemical tests. We also studied the secretory tissue using light and electron microscopy. The production of the exudates starts soon after seed germination, being evident in the epicotyl but not in the hypocotyl and cotyledons. The secretory activity extends throughout the juvenile and pre-reproductive phase, in primary stems and leaf portions. After the first flowering, secretion was no longer observed. The lipid exudates are secreted by the epidermis and are composed of mixtures of essential oils and oleoresins. Modified plastids, extensive rough endoplasmic reticulum, proliferated smooth endoplasmic reticulum, enlarged vacuoles containing flocculant materials, membrane debris, and convoluted tubules/lamellae membranes covered with osmiophilic deposits are the main features of the secretory epidermal cells. Secretion exits the protoplast by exocytosis and accumulates in the cuticle, resulting in a sheath of concentric bands of electron-dense deposits, and is released by cuticle peeling. The hydrophobic nature of the secretion, which forms an impermeable layer on the epidermis of young organs, is a relevant attribute of the aerial organs of S. parahyba. In addition to protecting against desiccation, this exudate effectively captures particles and immobilizes insects and other arthropods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

The analysis code can be requested by emailing the corresponding author (silvia.machado@unesp.br).

References

  • Adlassnig W, Lendl T, Peroutka M, Lang I (2010) Deadly glue-adhesive traps of carnivorous plants. In: von Byern J, Grunwald I (eds) Biological adhesive systems. Springer, Vienna

    Google Scholar 

  • Anderson B (2005) Adaptations to foliar absorption of feces: a pathway in plant carnivory. Ann Bot 95:757–761

    PubMed  PubMed Central  Google Scholar 

  • Berlyn GP, Miksche JP (1976) Botanical microtechnique and cytochemistry. Ames, Iowa

    Google Scholar 

  • Betz O (2010) Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In: Byern J, Grunwald I (eds) Biological adhesive systems—from nature to technical and medical application. Springer, New York, pp 111–152

    Google Scholar 

  • Bukatsch F (1972) Bemerkungen zur Doppelfärbung: Astrablau-Safranin. Mikrokosmos 61:255

    Google Scholar 

  • Cain AJ (1947) The use of Nile blue in the examination of lipoids. J Cell Sci 88:383–392

    Google Scholar 

  • Cunha AR, Martins D (2009) Classificação climática para os municípios de Botucatu e São Manuel-SP. Irriga 14:1–11

    Google Scholar 

  • David R, Carde JP (1964) Coloration différentielle des inclusions lipidiques et terpeniques des pseudophylles du pin maritime au moyen du reactif Nadi. C R Hebd Séances Acad Sci 258:1338–1340

    CAS  Google Scholar 

  • De-Paula OC, Marzinek J, Oliveira DMT, Paiva EAS (2015) Roles of mucilage in Emilia fosbergii, a myxocarpic Asteraceae: efficient seed imbibition and diaspore adhesion. Am J Bot 102(9):1413–1421

    CAS  PubMed  Google Scholar 

  • Duke SO (1994) Glandular trichomes—a focal point of chemical and structural interactions. Int J Plant Sci 155:617–620

    Google Scholar 

  • Epel BL (1994) Plasmodesmata: composition, structure and trafficking. Plant Mol Biol 26:1343–1356

    CAS  PubMed  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy. Wiley, New Jersey

    Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London

    Google Scholar 

  • Fahn A (2000) Structure and function of secretory cells. Adv Bot Res 31:37–75. https://doi.org/10.1016/S0065-2296(00)31006-0

    Article  CAS  Google Scholar 

  • Falara V, Pichersky E (2012) Plant volatiles and other specialized metabolites: synthesis, storage, emission, and function. In: Vivanco JM, Baluska F (eds) Secretions and exudates in biological systems, signaling and communication in plants. Springer, Berlin, pp 109–123

    Google Scholar 

  • Fan P, Leong BJ, Last RL (2019) Tip of the trichome: evolution of acylsugar metabolic diversity in Solanaceae. Curr Opin Plant Biol 49:8–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fourriere L, Jimenez AJ, Perez F, Boncompain G (2020) The role of microtubules in secretory protein transport; review. J Cell Sci 133:237016. https://doi.org/10.1242/jcs.237016

    Article  CAS  Google Scholar 

  • Freire JM, Piña-Rodrigues FCM, Lima ER, Sodré SRC, Corrêa RX (2007) Genetic structure of Schizolobium parahyba (Vell.) Blake (guapuruvu) populations by RAPD markers. Sci for 74:27–35

    Google Scholar 

  • Frenzke L, Lederer A, Malanin M, Eichhorn KL, Neinhuis C, Voigt D (2016) Plant pressure sensitive adhesives: similar chemical properties in distantly related plant lineages. Planta 244:145–154. https://doi.org/10.1007/s00425-016-2496-4

    Article  CAS  PubMed  Google Scholar 

  • Gregory P, Ave DA, Bouthyette PY, Tingey WM (1986) Insect-defensive chemistry of potato GT. In: Juniper BE, Southwood TRE (eds) Insects and the plant surface. E. Arnold, London, pp 173–183

    Google Scholar 

  • Hadas A (2005) Encyclopedia of Soils in the Environment. The Volcani Center, Bet Dagan, pp 130–137

    Google Scholar 

  • Hall LJ, Flowers TJ, Roberts RM (1981) Plant cell structure and metabolism, 2nd edn. Longman Group Limited, New York

    Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer, Berlin

    Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic Press, London

    Google Scholar 

  • Jensen WA (1962) Botanical histochemistry: principles and practice. W.H. Freeman, San Francisco

    Google Scholar 

  • Jiménez-Pomárico A, Avila-Núñez JL et al (2019) Chemical and morpho-functional aspects of the interaction between a Neotropical resin bug and a sticky plant. Rev Biol Trop 67:454–465. https://doi.org/10.15517/rbt.v67i3.33525

    Article  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Karban R, Lopresti E, Pepi A, Grof-Tisza P (2019) Induction of the sticky plant defense syndrome in wild tobacco. Ecology 100(8):e02746

    PubMed  Google Scholar 

  • Krimmel BA, Pearse IS (2013) Sticky plant traps insects to enhance indirect defence. Ecol Lett 16:219–224

    CAS  PubMed  Google Scholar 

  • Lackey JA (1978) Leaflet anatomy of Phaseoleae (Fabaceae, Papilionoideae) and its relation to taxonomy. Bot Gaz 139:346–446

    Google Scholar 

  • Leelavathi PM, Ramayya N (1983) Structure, distribution and classification of plant trichomes in relation to taxonomy III. Papilionoideae. Indian J for 92:421–441

    Google Scholar 

  • Levin DA (1976) The chemical defenses of plants to pathogens and herbivores. Annu Rev Ecol Syst 7:121–159

    CAS  Google Scholar 

  • Liu Y, Jing SX, Luo SH, Li SH (2019) Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Nat Prod Rep 36(4):626–665

    CAS  PubMed  Google Scholar 

  • LoPresti EF (2016) Chemicals on plant surfaces as a heretofore unrecognized, but ecologically informative, class for investigations into plant defence. Biol Rev 91(4):1102–1117. https://doi.org/10.1111/brv.12212

    Article  PubMed  Google Scholar 

  • LoPresti EF, Karban R (2016) Chewing sandpaper: grit, plant apparency, and plant defense in sand-entrapping plants. Ecology 97:826–833. https://doi.org/10.1890/15-1696.1

    Article  PubMed  Google Scholar 

  • LoPresti EF, Pearse IS, Charles GK (2015) The siren song of a sticky plant: Columbines provision mutualist arthropods by attracting and killing passerby insects. Ecology 96:2862–2869

    CAS  PubMed  Google Scholar 

  • LoPresti EF, Krimmel B, Pearse IS (2018) Entrapped carrion increases indirect plant resistance and intra-guild predation on a sticky tarweed. Oikos 127(7):1033–1044

    Google Scholar 

  • Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Plantarum, Nova Odessa

    Google Scholar 

  • Machado SR, Barreiro DP, Rocha JF, Rodrigues TM (2012) Dendroid colleters on vegetative and reproductive apices in Alibertia sessilis (Rubiaceae) differ in ultrastructure and secretion. Flora 207:868–877. https://doi.org/10.1016/j.flora.2012.09.013

    Article  Google Scholar 

  • Magalhães Filho G (2013) Caracterização dos padrões genéticos de populações invasoras e naturalizadas de Schizolobium parahyba (Caesalpinioideae–Fabaceae) por restriction-site associated DNA-sequencing. Dissertation, Universidade Estadual Paulista Júlio de Mesquita Filho

  • Marinho CR, Oliveira RB, Teixeira SP (2015) The uncommon cavitated secretory trichomes in Bauhinia s.s. (Fabaceae): the same roles in different organs. Bot J Linn Soc 180:104–122

    Google Scholar 

  • Marquiafável FS, Ferreira MDS, Teixeira SP (2009) Novel reports of glands in Neotropical species of Indigofera L. (Leguminosae, Papilionoideae). Flora 200:189–197

    Google Scholar 

  • Matos EC, Paiva EAS (2012) Structure, function and secretory products of the peltate glands of Centrolobium tomentosum (Fabaceae, Faboideae). Aust J Bot 60:301–309

    CAS  Google Scholar 

  • McFarlane HE, Watanabe Y, Yang W, Huang Y, Ohlrogge J, Samuels AL (2014) Golgi- and trans-Golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiol 164:1250–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalfe CR, Chalk L (1950) Anatomy of the dicotyledons: leaves, stem and wood in relation to taxonomy with notes on economic uses, vol I. Clarendon Press, Oxford

    Google Scholar 

  • Moghe GD, Leong BJ, Hurney S, Jones AD (2017) Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. Elife 6:e28468

    PubMed  PubMed Central  Google Scholar 

  • Nawrath C, Schreiber L, Franke RB, Geldner N, Pinto JJR, Kunst L (2013) Apoplastic diffusion barriers in Arabidopsis. The Arabidopsis Book. https://doi.org/10.1199/tab.0167

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Google Scholar 

  • Oliveira DMT (1999) Morfologia de plântulas e plantas jovens de 30 espécies arbóreas de Leguminosae. Acta Bot Bras 13(3):263–269

    Google Scholar 

  • Paiva EAS (2016) How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Ann Bot 117:533–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peiffer M, Tooker JF, Luthe DS, Felton GW (2009) Plants on early alert: GT as sensors for insect herbivores. New Phytol 184:644–656

    CAS  PubMed  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    CAS  PubMed  Google Scholar 

  • Pinto LP, Brito CW (2003) Dynamics of biodiversity loss in the Brazilian Atlantic Forest: an introduction. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America; biodiversity status, threats and outlook. Island Press, London, pp 405–434

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rischka K, Richter K, Hartwig A, Kozielec M, Slenzka K, Sader R, Grunwald I (2010) Bio-inspired polyphenolic adhesives for medical and technical applications. In: von Byern J, Grunwald I (eds) Biological adhesive systems from nature to technical and medical application. Springer, Vienna, pp 201–211

    Google Scholar 

  • Rodrigues TM, Teixeira SP, Machado SR (2011) The oleoresin secretory system in seedlings and adult plants of copaíba (Copaifera langsdorffii Desf., Leguminosae–Caesalpinioideae). Flora 206:585–594

    Google Scholar 

  • Sadala-Castilho R, Sá-Haiad B, Machado SR, Lima HA (2016) Oil-resin glands in Velloziaceae flowers: structure, ontogenesis and secretion. Plant Syst Evol 302(5):585–599

    CAS  Google Scholar 

  • Sawidis TH (1998) The subglandular tissue of Hibiscus rosa-sinensis nectaries. Flora 193:327–335

    Google Scholar 

  • Simoneit BRT, Medeiros PM, Wollenweber E (2008) Triterpenoids as major components of the insect-trapping glue of Roridula species. Z Für Nat 63:625–630

    CAS  Google Scholar 

  • Solereder H (1908) Systematic anatomy of the dicotyledons. A handbook for laboratories of pure and applied botany, vol 2. Clarendon Press, Oxford

    Google Scholar 

  • Sutherst RW, Jones RJ, Schnitzerling HJ (1982) Tropical legumes of the genus Stylosanthes immobilize and kill cattle ticks. Nature 295:320–321

    CAS  PubMed  Google Scholar 

  • Tian D, Tooker J, Peiffer M, Chung SH, Felton GW (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236:1053–1066

    CAS  PubMed  Google Scholar 

  • Tresmondi F, Canaveze Y, Guimarães E, Machado SR (2017) Colleters in Rubiaceae from forest and savanna: the link between secretion and environment. Sci Nat 104:17. https://doi.org/10.1007/s00114-017-1444-x

    Article  CAS  Google Scholar 

  • Uphof JCT (1962) Plant hairs. Encyclopedia of plant anatomy band IV/5. Gebr. Borntraeger, Berlin

  • Vargas W, Sartori ALB, Dias ES (2015) Novelties in secretory structures and anatomy of Rhynchosia (Fabaceae). Anais Acad Bras Cienc 87:83–87

    Google Scholar 

  • Vargas W, Machado SR, Lewis GP, Candido ES, Vatamparast M, Fortuna-Perez AP (2018) Revisiting the leaflet secretory structures in subtribe Cajaninae Benth. (Leguminosae, Phaseoleae). Int J Plant Sci 179(9):697. https://doi.org/10.1086/699288

    Article  Google Scholar 

  • Voigt D, Gorb S (2008) An insect trap as habitat: cohesion-failure mechanism prevents adhesion of Pameridea roridulae bugs to the sticky surface of the plant Roridula gorgonias. J Exp Biol 211:2647–2657. https://doi.org/10.1242/jeb.019273

    Article  PubMed  Google Scholar 

  • Voigt D, Gorb S (2010) Locomotion in a sticky terrain. Arthropod-Plant Interact 4:69–79

    Google Scholar 

  • Voigt D, Kim J, Jantschke A, Varenberg M (2020) Robust, universal, and persistent bud secretion adhesion in horse-chestnut trees. Sci Rep 10:16925. https://doi.org/10.1038/s41598-020-74029-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner GJ (1991) Secreting GT: more than just hairs. Plant Physiol 96:675–679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner G, Wang E, Shepherd R (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Werker E (2000) Trichome diversity and development. Advances Bot Res 31:1–35

    Google Scholar 

  • Wheeler AG, Krimmel BA (2015) Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions, and ecological implications. Ann Rev Entomol 60:393–414

    CAS  Google Scholar 

  • Whitmore TC (1990) An introduction to Tropical Rain Forests. Clarendon Press, Oxford

    Google Scholar 

  • Wilder JA (2019) A true “migrant trap”: Boerhavia (Nyctaginaceae) entanglement as a recurring cause of avian entrapment and mortality. Wilson J Ornithol 131:658–663

    Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    CAS  PubMed  Google Scholar 

  • Yang X, Dong M, Huang Z (2010) Role of mucilage in the germination of Artemisia sphaerocephala (Asteraceae) achenes exposed to osmotic stress and salinity. Plant Physiol Biochem 48:131–135. https://doi.org/10.1016/j.plaphy.2009.12.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/ Edital Universal Proc. 401053/2016-4) and also by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES), Finance Code 001. EASP, DMTO, and SRM received research grants from CNPq (Proc. 305638/2018-1, 305686/2018-6, and 308982/2020-7, respectively).

Author information

Authors and Affiliations

Authors

Contributions

SRM, DMTO, and EASP conceived and designed the research. SRM, EASP and YC carried out the work. All the authors wrote the manuscript.

Corresponding author

Correspondence to Silvia Rodrigues Machado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor Dagmar Voigt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiva, E.A.S., Oliveira, D.M.T., Canaveze, Y. et al. Adhesive secretion in Schizolobium parahyba (Vell.) Blake (Leguminosae: Caesalpinioideae): histochemical and morpho-functional characterization of this unusual feature in woody plants. Arthropod-Plant Interactions 16, 249–261 (2022). https://doi.org/10.1007/s11829-022-09888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-022-09888-y

Keywords

Navigation