Skip to main content

Advertisement

Log in

Multiple plant traits influence community composition of insect herbivores: a comparison of two understorey shrubs

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Structural and nutritional plant traits influence the ability of insect herbivores to locate, consume and persist on their hosts yet it is uncommon for ecologists to consider how multiple plant traits influence insect community composition. We sampled herbivorous insects on two understorey shrub species common to eucalypt forests of south-eastern Australia, namely Cassinia arcuata (Asteraceae) and Daviesia ulicifolia (Fabaceae). Regression analyses were used to assess the relative influence of plant structure (canopy volume), nutritional quality (macronutrients and total phenolics) and plant productivity (leaf litter) on insect abundance and species richness. Total N content of D. ulicifolia was significantly higher than C. arcuata, while the concentrations of P, K, Ca and Mg were higher in C. arcuata. Total phenolics and leaf litter were significantly lower in D. ulicifolia compared to C. arcuata. Insect composition was similar between the two shrubs but C. arcuata supported greater abundances. Canopy volume and the macronutrients P and Ca were important predictors of insect abundance on C. arcuata, whereas canopy volume alone, but neither plant productivity nor macronutrients, influenced the abundance of insects on D. ulicifolia. Ca was an important predictor of insect species richness on C. arcuata and P was an important predictor on D. ulicifolia. By quantifying a range of plant traits, we have provided an understanding of factors likely to influence the composition of herbivorous insects inhabiting these two shrubs. Traits including leaf architecture, foliar morphology and volatile terpenoids may yet explain the greater number of insects on C. arcuata since they influence the availability of microhabitats and apparency of host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:132–149

    Article  Google Scholar 

  • Agrawal AA, Weber MG (2015) On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds. Ecol Lett 18:985–991. doi:10.1111/ele.12482

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc 2:875–877

    Article  CAS  PubMed  Google Scholar 

  • Apple JL, Wink M, Wills SE, Bishop JG (2009) Successional change in phosphorus stoichiometry explains the inverse relationship between herbivory and lupin density on Mount St. Helens. PLoS One 4:e7807. doi:10.1371/journal.pone.0007807

    Article  PubMed  PubMed Central  Google Scholar 

  • Bar-Ness Y, Kirkpatrick J, McQuillan P (2006) Age and distance effects on the canopy arthropod composition of old-growth and 100 year-old Eucalyptus obliqua trees. For Ecol Manage 226:290–298

    Article  Google Scholar 

  • Barton K (2015) Package ‘MuMIn’. Version 1:18

  • Basset Y (1991) Leaf production of an overstorey rainforest tree and its effects on the temporal distribution of associated insect herbivores. Oecologia 88:211–219

    Article  PubMed  Google Scholar 

  • Basset Y, Kitching R (1991) Species number, species abundance and body length of arboreal arthropods associated with an Australian rainforest tree. Ecol Entomol 16:391–402

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw. doi:10.18637/jss.v067.i01

    Google Scholar 

  • Becerra JX (1997) Insects on plants: macroevolutionary chemical trends in host use. Science 276:253

    Article  CAS  PubMed  Google Scholar 

  • Becerra JX (2015) Macroevolutionary and geographical intensification of chemical defense in plants driven by insect herbivore selection pressure. Curr Opin Insect Sci 8:15–21

    Article  Google Scholar 

  • Behmer ST, Joern A (2008) Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc Natl Acad Sci USA 105:1977–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boersma M, Elser JJ (2006) Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87:1325–1330

    Article  PubMed  Google Scholar 

  • Brown VK, Gibson CWD, Kathirithamby J (1992) Community organisation in leaf hoppers. Oikos 65:97–106. doi:10.2307/3544891

    Article  CAS  Google Scholar 

  • Burnham K, Anderson D (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, Secaucus

    Google Scholar 

  • Burns AE, Cunningham SA, Watson DM (2011) Arthropod assemblages in tree canopies: a comparison of orders on Box Mistletoe (Amyema miquelii) and its host eucalypts. Aust J Entomol 50:221–230. doi:10.1111/j.1440-6055.2011.00811.x

    Google Scholar 

  • Burns AE, Taylor GS, Watson DM, Cunningham SA (2014) Diversity and host specificity of Psylloidea (Hemiptera) inhabiting box mistletoe, Amyema miquelii (Loranthaceae) and three of its host Eucalyptus species. Austral Entomol 54:306–314

    Article  Google Scholar 

  • Campbell M (1990) Distribution, ecology and control of Cassinia arcuata (Sifton Bush) in New South Wales. Aust J Exp Agric 30:215–220. doi:10.1071/EA9900215

    Article  Google Scholar 

  • Chandler G, Crisp M (1998) Morphometric and phylogenetic analysis of the Daviesia ulicifolia complex (Fabaceae, Mirbelieae). Plant Sys Evol 209:93–122. doi:10.1007/BF00991527

    Article  Google Scholar 

  • Chippendale G (1988) Flora of Australia, vol 19. Myrtaceae-Eucalyptus, Angophora. Australian Government Publication Service, Canberra

  • Cisneros JJ, Godfrey LD (2001) Midseason pest status of the cotton aphid (Homoptera: Aphididae) in California cotton: is nitrogen a key factor? Environ Entomol 30:501–510

    Article  Google Scholar 

  • Clancy KM, King RM (1993) Defining the Western Spruce Budworm’s nutritional niche with response surface methodology. Ecology 74:442–454. doi:10.2307/1939306

    Article  Google Scholar 

  • Close DC, McArthur C, Hagerman AE, Davies NW, Beadle CL (2007) Phenolic acclimation to ultraviolet-A irradiation in Eucalyptus nitens seedlings raised across a nutrient environment gradient. Photosynthetica 45(1):36–42

    Article  CAS  Google Scholar 

  • Costermans L (2009) Native trees and shrubs of south-eastern Australia. New Holland, Sydney

    Google Scholar 

  • Crisp MD, Cook LG (2003) Phylogeny and evolution of anomalous roots in Daviesia (Fabaceae: Mirbelieae). Int J Plant Sci 164(4):603–612

    Article  CAS  Google Scholar 

  • Cunningham G, Mulham W, Milthorpe P, Leigh J (2011) Plants of Western New South Wales. CSIRO Publishing, Clayton

    Google Scholar 

  • Dormann CF et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. doi:10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Dudt JF, Shure DJ (1994) The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75:86–98. doi:10.2307/1939385

    Article  Google Scholar 

  • Dyer LA et al (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696–699

    Article  CAS  PubMed  Google Scholar 

  • Dyer LA, Letourneau DK, Chavarria GV, Amoretti DS (2010) Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities. Ecology 91:3707–3718

    Article  PubMed  Google Scholar 

  • Elser JJ et al (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Article  CAS  PubMed  Google Scholar 

  • Espírito-Santo MM, de Neves FS, Andrade-Neto FR, Fernandes GW (2007) Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia 153:353–364. doi:10.1007/s00442-007-0737-8

    Article  PubMed  Google Scholar 

  • Felton GW, Donato K, Vecchio RJ, Duffey SS (1989) Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chem Ecol 15:2667–2694. doi:10.1007/bf01014725

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Donato KK, Broadway RM, Duffey SS (1992) Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodoptera exigua. J Insect Physiol 38:277–285. doi:10.1016/0022-1910(92)90128-Z

    Article  CAS  Google Scholar 

  • Fletcher M (2009) Identification keys and checklists for the leafhoppers, planthoppers and their relatives occurring in Australia and neighbouring areas (Hemiptera: Auchenorrhyncha). http://www1.dpi.nsw.gov.au/keys/leafhop/index.html. Accessed 07 July 2015

  • Fletcher MJ, Larivière M-C (2009) Anzygina, a new genus for some Australasian microleafhopper species formerly placed in the genus Zygina Fieber (Cicadellidae: Typhlocybinae: Erythroneurini). Aust J Entomol 48:164–176. doi:10.1111/j.1440-6055.2009.00700.x

    Article  Google Scholar 

  • Foulds W (1993) Nutrient concentrations of foliage and soil in South-western Australia. New Phytol 125:529–546. doi:10.1111/j.1469-8137.1993.tb03901.x

    Article  CAS  Google Scholar 

  • Fox LR, Macauley BJ (1977) Insect grazing on Eucalyptus in response to variation in leaf tannins and nitrogen. Oecologia 29:145–162. doi:10.1007/BF00345794

    Article  PubMed  Google Scholar 

  • Geddes LS, Lunt ID, Smallbone LT, Morgan JW (2011) Old field colonization by native trees and shrubs following land use change: could this be Victoria’s largest example of landscape recovery? Ecol Manag Restor 12:31–36. doi:10.1111/j.1442-8903.2011.00570.x

    Article  Google Scholar 

  • Haddad N, Tilman D, Haarstad J, Ritchie M, Knops J (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Amer Nat 158:17–35. doi:10.1086/320866

    Article  CAS  Google Scholar 

  • Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JMH, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039. doi:10.1111/j.1461-0248.2009.01356.x

    Article  PubMed  Google Scholar 

  • Hatcher PE (1994) The importance of needle terpene composition in determining the macrolepidoptera species richness of Canadian conifers. Oikos 71:526–534. doi:10.2307/3545841

    Article  Google Scholar 

  • Heisswolf A, Obermaier E, Poethke HJ (2005) Selection of large host plants for oviposition by a monophagous leaf beetle: nutritional quality or enemy-free space? Ecol Entomol 30:299–306. doi:10.1111/j.0307-6946.2005.00706.x

    Article  Google Scholar 

  • Helson G (1950) Yellow dwarf of tobacco in Australia. V. Transmission by Orosius argentatus (Evans) to some alternative host plants. Aust J Agric Res 1:144–147. doi:10.1071/AR9500144

    Article  Google Scholar 

  • Huberty A, Denno R (2006) Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies. Oecologia 149:444–455. doi:10.1007/s00442-006-0462-8

    Article  PubMed  Google Scholar 

  • Joern A, Provin T, Behmer ST (2011) Not just the usual suspects: insect herbivore populations and communities are associated with multiple plant nutrients. Ecology 93:1002–1015. doi:10.1890/11-1142.1

    Article  Google Scholar 

  • Jones CG, Lawton JH (1991) Plant chemistry and insect species richness of British umbellifers. J Anim Ecol 60:767–777

    Article  Google Scholar 

  • Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2013) lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2

  • Landsberg J (1990) Dieback of rural eucalypts: does insect herbivory relate to dietary quality of tree foliage? Aust J Ecol 15:73–87. doi:10.1111/j.1442-9993.1990.tb01022.x

    Article  Google Scholar 

  • Lawton J (1983) Plant architecture and the diversity of phytophagous insects. Annu Rev Entomol 28:23–39

    Article  Google Scholar 

  • Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323

    Article  Google Scholar 

  • Madaan R, Bansal G, Kumar S, Sharma A (2011) Estimation of total phenols and flavonoids in extracts of Actaea spicata roots and antioxidant activity studies. Indian J Pharm Sci 73:666–669. doi:10.4103/0250-474x.100242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majer JD, Recher HF, Ganeshanandam S (1992) Variation in foliar nutrients in Eucalyptus trees in eastern and Western Australia. Aust J Ecol 17:383–393. doi:10.1111/j.1442-9993.1992.tb00821.x

    Article  Google Scholar 

  • Majer J, Recher H, Postle A (1994) Comparison of arthropod species richness in eastern and western Australian canopies: a contribution to the species number debate. Mem Qld Mus 36:121–131

    Google Scholar 

  • Majer J, Recher H, Ganesh S (2000) Diversity patterns of eucalypt canopy arthropods in eastern and western Australia. Ecol Entomol 25:295–306

    Article  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press, San Diego

    Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161. doi:10.1146/annurev.es.11.110180.001003

    Article  Google Scholar 

  • Moir ML, Brennan KEC, Fletcher MJ, Majer JD, Koch JM (2011) Multi-scale patterns in the host specificity of plant-dwelling arthropods: the influence of host plant and temporal variation on species richness and assemblage composition of true bugs (Hemiptera). J Nat Hist 45:2577–2604. doi:10.1080/00222933.2011.597522

    Article  Google Scholar 

  • Morrow P, Fox LR (1980) Effects of variation in Eucalyptus essential oil yield on insect growth and grazing damage. Oecologia 45:209–219

    Article  CAS  PubMed  Google Scholar 

  • Mound LA, Masumoto M (2009) Australian Thripinae of the Anaphothrips genus-group (Thysanoptera), with three new genera and thirty-three new species. Magnolia Press, Brentwood

    Google Scholar 

  • Mound LA, Morris DC (2007) A new thrips pest of Myoporum cultivars in California, in a new genus of leaf-galling Australian Phlaeothripidae (Thysanoptera). Zootaxa 1495:35–45

    Google Scholar 

  • Nevo E, Coll M (2001) Effect of nitrogen fertilization on Aphis gossypii (Homoptera: Aphididae): variation in size, color, and reproduction. J Econ Entomol 94:27–32

    Article  CAS  PubMed  Google Scholar 

  • Novotny V (1994) Association of polyphagy in leafhoppers (Auchenorrhyncha, Hemiptera) with unpredictable environments. Oikos 70:223–232. doi:10.2307/3545633

    Article  Google Scholar 

  • Ohmart C, Thomas J, Stewart L (1987) Nitrogen, leaf toughness and the population dynamics of Paropsis atomaria Olivier (Coleoptera: Chrysomelidae)—a hypothesis. Aust J Entomol 26:203–207

    Article  Google Scholar 

  • Perkins MC, Woods HA, Harrison JF, Elser JJ (2004) Dietary phosphorus affects the growth of larval Manduca sexta. Arch Insect Biochem Physiol 55:153–168. doi:10.1002/arch.10133

    Article  CAS  PubMed  Google Scholar 

  • Prestidge RA, McNeill S (1983) Auchenorrhyncha-host plant interactions: leafhoppers and grasses. Ecol Entomol 8:331–339. doi:10.1111/j.1365-2311.1983.tb00513.x

    Article  Google Scholar 

  • Price PW (2002) Resource-driven terrestrial interaction webs. Ecol Res 17:241–247

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing, 2.15.1 edn. Foundation for Statistical Computing, Vienna, Austria

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124. doi:10.2307/1942161

    Article  Google Scholar 

  • Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79:2057–2070

    Article  Google Scholar 

  • Simpson SJ, Sibly RM, Lee KP, Behmer ST, Raubenheimer D (2004) Optimal foraging when regulating intake of multiple nutrients. Anim Behav 68:1299–1311. doi:10.1016/j.anbehav.2004.03.003

    Article  Google Scholar 

  • Slee AV, Brooker H, Duffy M, West JG (2006) EUCLID eucalypts of Australia, vol 3. Centre for Plant Biodiversity Research, Canberra

  • Steinbauer MJ, Wallis IR, Davies NW, Watson SJ (2015) Foliar quality of co-occurring mallee eucalypts: balance of primary and secondary metabolites reflects past growing conditions. Chemoecology 25:179–191

    Article  CAS  Google Scholar 

  • Strauss SY, Cacho NI, Schwartz MW, Schwartz AC, Burns KC (2015) Apparency revisited. Entomol Exp Appl 157:74–85. doi:10.1111/eea.12347

    Article  Google Scholar 

  • Summers CB, Felton GW (1994) Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem Mol Biol 24:943–953. doi:10.1016/0965-1748(94)90023-X

    Article  CAS  Google Scholar 

  • Tao L, Berns AR, Hunter MD (2014) Why does a good thing become too much? Interactions between foliar nutrients and toxins determine performance of an insect herbivore. Funct Ecol 28:190–196. doi:10.1111/1365-2435.12163

    Article  Google Scholar 

  • Vannette RL, Hunter MD (2011) Plant defence theory re-examined: nonlinear expectations based on the costs and benefits of resource mutualisms. J Ecol 99:66–76. doi:10.1111/j.1365-2745.2010.01755.x

    Article  Google Scholar 

  • Vesk PA, McCarthy MA, Moir ML (2010) How many hosts? Modelling host breadth from field samples. Methods Ecol Evol 1:292–299

    Google Scholar 

  • Watts T, Woods HA, Hargand S, Elser JJ, Markow TA (2006) Biological stoichiometry of growth in Drosophila melanogaster. J Insect Physiol 52:187–193

    Article  CAS  PubMed  Google Scholar 

  • Wilson EO (1987) The little things that run the world (the importance and conservation of invertebrates). Conserv Biol 1:344–346

    Article  Google Scholar 

  • Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19. doi:10.1046/j.1365-2435.2003.00694.x

    Article  Google Scholar 

  • Zehnder CB, Hunter MD (2009) More is not necessarily better: the impact of limiting and excessive nutrients on herbivore population growth rates. Ecol Entomol 34:535–543. doi:10.1111/j.1365-2311.2009.01101.x

    Article  Google Scholar 

  • Zuur AF (2009) Mixed effects models and extensions in ecology with R. Statistics for biology and health. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This research was funded by a Trust for Nature Honours stipend to the first author. We thank Doug Robinson, Kelly Arbon and Kirsten Hutchinson for assisting with site selection and plant identification. Thanks to landholders for allowing access to their properties. We appreciate the efforts of Helen Olfans towards insect collection, sorting and plant preparation for analysis. Thanks to Michael Dann (La Trobe University) for analysing total phenolics and Gary Clark (AgriBio, Centre for AgriBioscience) for his assistance with plant macronutrient analyses. Leafhopper identifications were provided by Murray Fletcher (Orange Agricultural Institute), identifications of Chrysomelidae by Chris Reid (Australian Museum, Sydney), identifications of Thysanoptera by Laurence Mound (CSIRO Ecosystem Sciences, Canberra) and identifications of Psylloidea by Gary Taylor (The University of Adelaide).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renae J. Forbes.

Additional information

Handling Editor: Heikki Hokkanen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forbes, R.J., Watson, S.J. & Steinbauer, M.J. Multiple plant traits influence community composition of insect herbivores: a comparison of two understorey shrubs. Arthropod-Plant Interactions 11, 889–899 (2017). https://doi.org/10.1007/s11829-017-9545-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-017-9545-1

Keywords

Navigation