Skip to main content
Log in

Influence of the parameters of chitin deacetylation process on the chitosan obtained from crab shell waste

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Chitosan, one of the most interesting and intriguing biopolymer, can be extracted from different marine waste. The present paper focuses on the chitosan extraction procedure from Macropipus holsatus crab waste. Because the deacetylation degree is the most important characteristic of chitosan, the influence of specific operating parameters during deacetylation treatment was analyzed by statistical analysis and mathematical modelling using artificial neural networks (ANN). The ANN simulation put into evidence the manner that the deacetylation degree is influenced by the considered operating conditions and enabled the identification of optimal operating conditions in order to obtain a chitosan with a relatively high deacetylation degree. The obtained chitosan was characterized by various methods, including physical-chemical analysis, structure identification and crystallinity index. The main effects as well as the interaction effects for some physical-chemical properties were studied to establish if and how the chitosan properties are affected by the extraction procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ul-Islam, N. Shah, J. H. Ha and J. K. Park, Korean J. Chem. Eng., 28, 1736 (2011).

    CAS  Google Scholar 

  2. Z. Afsarian and Y. Mansourpanah, Korean J. Chem. Eng., 35, 1867 (2018).

    CAS  Google Scholar 

  3. S. D. Ippólito, J. R. Mendieta, M. C. Terrile, C. V Tonón, A. Y Mansilla, S. Colman, L. Albertengo, M. S. Rodríguez and C. A. Casalongué, in Biological activities and application of marine polysaccharides, E. A. Shalaby (Ed.), Intech Open, Croatia (2017).

  4. F. R. De Abreu, S. P. Campana-Filho, Polímeros: Ciência e Tecnologia, 15, 79 (2005).

    CAS  Google Scholar 

  5. H. S. Kim, M.-R. Park, S.-K. Kim and G.-T. Jeong, Korean J. Chem. Eng., 35, 1290 (2018).

    CAS  Google Scholar 

  6. M. H. Struszczyk, Polimery, 47, 316 (2002).

    CAS  Google Scholar 

  7. E. S. de Alvarenga, in Biotechnology of Biopolymers, M. Elnashar Ed., IntechOpen, Croatia (2011).

  8. G. A. M. Ruiz and H. F. Z. Corrales, in Biological Activities and Application of Marine Polysaccharides, E. A. Shalaby (Ed.), Croatia, InTech Open (2017).

  9. O. C. Wilson Jr. and T. Omokanwaye, in Biopolymer Nanocomposites: Processing, properties and applications, A. Dufresne (Ed.), R. F. Grossman and D. Nwabunma (Series Eds.), Wiley Series On Polymer Engineering and Technology (2013).

  10. G. Lodhi, Y.-S. Kim, J.-W Hwang, S.-K. Kim, Y.-J. Jeon, J.-Y. Je, C.-B. Ahn, S.-H. Moon, B.-T. Jeon and P.-J. Park, BioMed Res. Int., 2014, 654913 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. M. H. Dehghani, A. Zarei, A. Mesdaghinia, R. Nabizadeh, M. Ali-mohammadi and M. Afsharnia, Korean J. Chem. Eng., 34, 757 (2017).

    CAS  Google Scholar 

  12. H.-J. Choi and S.-W. Yu, Korean J. Chem. Eng., 35, 2198 (2018).

    CAS  Google Scholar 

  13. X. Lin, L. Wang, S. Jiang, L. Cui and G. Wu, Korean J. Chem. Eng., 36, 1102 (2019).

    CAS  Google Scholar 

  14. S. Karimidost, E. Moniri and M. Miralinaghi, Korean J. Chem. Eng., 36, 1115 (2019).

    CAS  Google Scholar 

  15. J. Pan, Z. Ou, L. Tang and H. Shi, Korean J. Chem. Eng., 36, 729 (2019).

    CAS  Google Scholar 

  16. F. Ardeshiri, A. Akbari, M. Peyravi and M. Jahanshahi, Korean J. Chem. Eng., 36, 255 (2019).

    CAS  Google Scholar 

  17. N. N. Bahrudin and M. A. Nawi, Korean J. Chem. Eng., 36, 478 (2019).

    CAS  Google Scholar 

  18. Z. Li, Z. Ma, Y. Xu, X. Wang, Y. Sun, R. Wang, J. Wang, X. Gao and J. Gao, Korean J. Chem. Eng., 35, 1716 (2018).

    CAS  Google Scholar 

  19. F. A. Ahing and N. Wid, Int. J. Adv. Appl. Sci., 3, 31 (2016).

    Google Scholar 

  20. R. F. Weska, J. M. Moura, L. M. Batista, J. Rizzi and L. A. A. Pinto, J. Food Eng., 80, 749 (2007).

    CAS  Google Scholar 

  21. KE. Tokatli and A. Demirdöven, J. Food Process. Preserv., 42, e13494 (2017).

    Google Scholar 

  22. A. Percot, C. Viton and A. Domard, Biomacromolecules, 4, 12 (2003).

    CAS  PubMed  Google Scholar 

  23. B. B. Seghir and M. H. Benhamza, J. Food Measurement and Characterization, 11, 1137 (2017).

    Google Scholar 

  24. N. D. Takarina, A. A. Nasrul and A. Nurmarina, Int. J. Pharma Medicine and Biological Sciences, 6, 16 (2017).

    CAS  Google Scholar 

  25. M. Djaeni, Reaktor, 7, 37 (2003).

    Google Scholar 

  26. F. Boßelmann, P. Romano, H. Fabritius, D. Raabe and M. Epple, Thermochim. Acta, 463, 65 (2007).

    Google Scholar 

  27. S. H. Lv, in Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, F. Pacheco-Torgal, V. Ivanov, N. Karak and H. Jonkers Eds., Elsevier (2016).

  28. E. Szymańsk and K. Winnicka, Mar. Drugs, 13(4), 1819 (2015).

    Google Scholar 

  29. I. Younes and M. Rinaudo, Mar. Drugs, 13(3), 1133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. I. Desportes and J. Schrével, in Treatise on Zoology — Anatomy, Taxonomy, Biology. The Gregarines — Vol. II, Desportes I. and Schrével J. (Eds.), BRILL (2013).

  31. R. Ingle, in Crayfishes, Lobsters and Crabs of Europe: An Illustrated Guide to common and traded species, R. Ingle Ed., Springer Science and Business Media (2012).

  32. M. C. Băcescu, Fauna Republicii Socialiste România: Vol. IV: Crustacea. Fascicula 9: Decapoda, Editura Academiei Republicii Socialiste România, Bucureşti (1967).

    Google Scholar 

  33. K. E. Carpenter and N. De Angelis, in The living marine resources of the Eastern Central Atlantic. Volume 1: Introduction, crustaceans, chitons and cephalopods, K. E. Carpenter, N. De Angelis (Eds.), Rome (2014).

  34. D. C. Montgomery, Design and Analysis of Experiments, 8th Ed., John Wiley & Sons, Inc., Arizona State University (2013).

  35. R. Czechowska-Biskup, D. Jarosińska, B. Rokita, P. Ulański and J. M. Rosiak, Prog. Chem. Appl. Chitin and Its Derivatives, XVII, 5 (2012).

    Google Scholar 

  36. J. B. Dima, C. Sequeiros and N. Zaritzky, in Biological Activities and Application of Marine Polysaccharides, E. A. Shalaby (Ed.), Intech (2017).

  37. F. A. Al Sagheer, M. A. Al-Sughayer, S. Muslim and M. Z. Elsabee, Carbohydr. Polym., 77, 410 (2009).

    CAS  Google Scholar 

  38. W. Wang, S. Bo, S. Li and W. Qin, Int. J. Biol. Macromol., 13, 284 (1991).

    Google Scholar 

  39. S.-O. Fernandez-Kim, Louisiana State University Master’s Thesis (2004).

  40. AOAC 2000 standard, Determination of moisture content.

  41. J. Brugnerotto, J. Lizardi, F. M. Goycoolea, W. Argüelles-Monal, J. Desbrières and M. Rinaudo, Polymer, 42, 3578 (2001).

    Google Scholar 

  42. D. R. Baughman and Y. A. Liu, Neural Networks in Bioprocessing and Chemical Engineering, Academic Press, San Diego (1995).

    Google Scholar 

  43. J. Kumirska, M. Czerwicka, Z. Kaczyńsi, A. Bychowska, K. Brzozovski, J. Thöming and P. Stepnovski, Mar. Drugs, 8, 1589 (2010).

    Google Scholar 

  44. Y. Liu, Y. Bai and H. Liu, in Handbook of Analysis of Active Compounds in Functional Foods, L. M. L. Nollet and Fidel Toldra (Eds.), CRC Press (2012).

  45. J. Csaszar and N. M. Bizony, Acta Physica et Chemica, 31, 730 (1985).

    Google Scholar 

  46. S. Gaisford, in Aulton’s Pharmaceutics: The Design and Manufacture of Medicines, M. E. Aulton and K. M. G. Taylor (Eds.), 5th Ed., Elsevier (2018).

  47. A. T. Balaban, M. Banciu and I.I. Pogany, Aplicaţii ale metodelor fizice în chimia organică, Ed. Ştiinţifică şi Enciclopedică, Bucureşti (1983).

  48. M. Rinaudo, Prog. Polym. Sci., 31, 608 (2006).

    Google Scholar 

  49. M. Kaya, T. Baran, A. Mentes, M. Asaroglu, G. Sezen and K. O. Tozak, Food Biophysics, 9, 145 (2014).

    Google Scholar 

  50. H. E. Knidri, R. Belaabed, R. E. Khalfaouy, A. Laajeb, A. Addaou and A. Lahsini, JMES, 8, 3648 (2017).

    Google Scholar 

  51. I. K. D. Dimzon and T. P. Knepper, Int. J. Biol. Macromol., 72, 939 (2015).

    CAS  PubMed  Google Scholar 

  52. E. M. Dahmane, M. Taourirte, N. Eladlani and M. Rhazi, Int. J. Polym. Anal. Charact., 19, 342 (2014).

    CAS  Google Scholar 

  53. R. S. C. M. Q. Antonino, B. R. P. L. Fook, V. A. O. Lima, R. I. F. Rached, E. P. N. Lima, R. J. S. Lima, C. A. P. Covas and M. V. L. Fook, Marine Drugs, 15, 8 (2017).

    Google Scholar 

  54. A. Alishahi, A. Mirvaghefi, M. R. Tehrani, H. Farahmand, S. A. Shojaosadati, F. A. Dorkoosh and M. Z. Elsabee, J. Polym. Environ., 19, 781 (2011).

    Google Scholar 

  55. L. Zelencova, S. Erdoğan, T. Baran and M. Kaya, Polym. Sci. — Ser. A, 57, 440 (2015).

    Google Scholar 

  56. C. T. G. V. M. T. Pires, J. A. P. Vilela and C. Airoldi, Procedia Chem., 9, 222 (2014).

    Google Scholar 

  57. M. Ioelovich, Res. Rev.: J. Chem., 3, 7 (2014).

    Google Scholar 

  58. NIOSH Manual of Analytical Methods (NMAM), Silica Crystalline by XRD, 4th Ed., method 7500 (2003).

  59. Standard X-ray Diffraction Powder Patterns, NBS Monograph 25, section 18 (S18), U.S. Department of Commerce/National Bureau of Standards (1981).

  60. B. Focher, A. Naggi, G. Torri, A. Cosani and M. Terbojevich, Carbohydr. Polym., 18, 43 (1992).

    CAS  Google Scholar 

  61. Y. Zhang, C. Xue, Y. Xue, R. Gao and X. Zhang, Carbohydr. Res., 340(11), 1914 (2005).

    CAS  PubMed  Google Scholar 

  62. N. M. Sarbon, S. Sandanamsamy, S. F. S. Kamaruzaman and F. Ahmad, J. Food Sci. Technol., 52(7), 4266 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Rău.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pădurețu, CC., Isopescu, R., Rău, I. et al. Influence of the parameters of chitin deacetylation process on the chitosan obtained from crab shell waste. Korean J. Chem. Eng. 36, 1890–1899 (2019). https://doi.org/10.1007/s11814-019-0379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0379-7

Keywords

Navigation