Skip to main content

Advertisement

Log in

Controlled release of iron for activation of persulfate to oxidize orange G using iron anode

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Persulfate (PS) can be activated by transition metal to generate a sulfate radical and oxidize persistent organic pollutants. However, activation with excessive Fe(II) causes unnecessary self-degradation of PS. In this study, Fe(II) was slowly and continuously injected electrochemically using an iron anode to minimize the self-degradation of PS. Additionally, reaction rate was controlled by adjusting the current intensity applied to the system. Total organic carbon (TOC) was analyzed as an indicator of complete mineralization because the model pollutant, orange G (OG), produced secondary pollutants after disruption of the azo bonds. The removal rate of TOC was 1/10-th of that for OG. In addition, the effect of molar ratio of OG and PS was also studied to confirm the complete mineralization of OG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. X.-R. Xu, H.-B. Li, W.-H. Wang and J.-D. Gu, Chemosphere, 57, 595 (2004).

    Article  CAS  Google Scholar 

  2. J. Fernandez, J. Bandara, A. Lopez, P. Buffat and J. Kiwi, Langmuir, 15, 185 (1999).

    Article  CAS  Google Scholar 

  3. C. Hsueh, Y. Huang, C. Wang and C.-Y. Chen, Chemosphere, 58, 1409 (2005).

    Article  CAS  Google Scholar 

  4. I. K. Konstantinou and T. A. Albanis, Appl. Catal. B-Environ., 49, 1 (2004).

    Article  CAS  Google Scholar 

  5. Y.-B. Xie and X. Li, Mater. Chem. Phys., 95, 39 (2006).

    Article  CAS  Google Scholar 

  6. X.-R. Xu, H.-B. Li, W.-H. Wang and J.-D. Gu, Chemosphere, 59, 893 (2005).

    Article  CAS  Google Scholar 

  7. A. Aleboyeh, M. Olya and H. Aleboyeh, J. Hazard. Mater., 162, 1530 (2009).

    Article  CAS  Google Scholar 

  8. J. Kim, C. Yeom and Y. Kim, Korean J. Chem. Eng., 33, 1855 (2016).

    Article  CAS  Google Scholar 

  9. S. Yang, X. Yang, X. Shao, R. Niu and L. Wang, J. Hazard. Mater., 186, 659 (2011).

    Article  CAS  Google Scholar 

  10. S. Rodriguez, L. Vasquez, D. Costa, A. Romero and A. Santos, Chemosphere, 101, 86 (2014).

    Article  CAS  Google Scholar 

  11. Y. Yang, J. J. Pignatello, J. Ma and W. A. Mitch, Environ. Sci. Technol., 48, 2344 (2014).

    Article  CAS  Google Scholar 

  12. K. C. Huang, R. A. Couttenye and G. E. Hoag, Chemosphere, 49, 413 (2002).

    Article  CAS  Google Scholar 

  13. S. G. Huling and B. E. Pivetz, In-situ chemical oxidation, in, DTIC Document (2006).

    Google Scholar 

  14. X.-R. Xu and X.-Z. Li, Sep. Purif. Technol., 72, 105 (2010).

    Article  CAS  Google Scholar 

  15. H. S. Son, J. K. Im and K. D. Zoh, Water Res., 43, 1457 (2009).

    Article  CAS  Google Scholar 

  16. M. I. Stefan and J. R. Bolton, Environ. Sci. Technol., 32, 1588 (1998).

    Article  CAS  Google Scholar 

  17. M. Moradi, F. Ghanbari, M. Manshouri and K. A. Angali, Korean J. Chem. Eng., 33, 539 (2016).

    Article  CAS  Google Scholar 

  18. S. A. Kordkandi and M. Forouzesh, J. Taiwan Inst. Chem. Eng., 45, 2597 (2014).

    Article  CAS  Google Scholar 

  19. C. W. Wang and C. J. Liang, Chem. Eng. J., 254, 472 (2014).

    Article  CAS  Google Scholar 

  20. H. Y. Liang, Y. Q. Zhang, S. B. Huang and I. Hussain, Chem. Eng. J., 218, 384 (2013).

    Article  CAS  Google Scholar 

  21. D. Han, J. Wan, Y. Ma, Y. Wang, M. Huang, Y. Chen, D. Li, Z. Guan and Y. Li, Chem. Eng. J., 256, 316 (2014).

    Article  CAS  Google Scholar 

  22. G. P. Anipsitakis and D. D. Dionysiou, Environ. Sci. Technol., 38, 3705 (2004).

    Article  CAS  Google Scholar 

  23. C. S. Liu, K. Shih, C. X. Sun and F. Wang, Sci. Total Environ., 416, 507 (2012).

    Article  CAS  Google Scholar 

  24. R. G. Ehl and A. J. Ihde, J. Chem. Edu., 31, 226 (1954).

    Article  CAS  Google Scholar 

  25. S. H. Yuan, P. Liao and A. N. Alshawabkeh, Environ. Sci. Technol., 48, 656 (2014).

    Article  CAS  Google Scholar 

  26. S.-M. Park, S.-W. Lee, P.-Y. Jeon and K. Baek, Water Air Soil Pollut., 227, 462 (2016).

    Article  Google Scholar 

  27. E. Brillas, I. Sirés and M. A. Oturan, Chem. Rev., 109, 6570 (2009).

    Article  CAS  Google Scholar 

  28. J. Zou, J. Ma, L. Chen, X. Li, Y. Guan, P. Xie and C. Pan, Environ. Sci. Technol., 47, 11685 (2013).

    Article  CAS  Google Scholar 

  29. T. Yahagi, M. Degawa, Y. Seino, T. Matsushima, M. Nagao, T. Sugimura and Y. Hashimoto, Cancer Lett., 1, 91 (1975).

    Article  CAS  Google Scholar 

  30. S. Figueroa, L. Vázquez and A. Alvarez-Gallegos, Water Res., 43, 283 (2009).

    Article  CAS  Google Scholar 

  31. R. Kumar and A. Sinha, Korean J. Chem. Eng., 33, 3281 (2016).

    Article  CAS  Google Scholar 

  32. G. P. Anipsitakis and D. D. Dionysiou, Environ. Sci. Technol., 37, 4790 (2003).

    Article  CAS  Google Scholar 

  33. E. Viollier, P. Inglett, K. Hunter, A. Roychoudhury and P. Van Cappellen, Appl. Geochem., 15, 785 (2000).

    Article  CAS  Google Scholar 

  34. K. Baek, A. Ciblak, X. H. Mao, E. J. Kim and A. Alshawabkeh, Water Res., 47, 6538 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitae Baek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, P., Park, SM. & Baek, K. Controlled release of iron for activation of persulfate to oxidize orange G using iron anode. Korean J. Chem. Eng. 34, 1305–1309 (2017). https://doi.org/10.1007/s11814-017-0062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0062-9

Keywords

Navigation