Skip to main content
Log in

Immobilization technologies for the management of hazardous industrial waste using granite waste (case study)

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Full characterization of granite waste sludge (GWS) was accomplished by X-ray diffraction (XRD) and Xray fluorescence (XRF) for identification of its phase and chemical composition. Different leaching tests were conducted to determine the efficiency of the GWS for metal stabilization in hazardous sludge. The leaching of the metals from stabilized contaminated sludge was decreased as the GWS amount increased. Only 15% of GWS was sufficient for stabilization of all metal ions under investigation. The main reason for metal immobilization was attributed to the aluminosilicates or silicates matrix within the GWS, which can transform the metals in the form of their insoluble hydroxides or absorbed in the stabilized matrix. Also, solidification/stabilization technique was used for remediation of contaminated sludge. Compressive strength test after curing for 28 days was used for measuring the effectiveness of remediation technique; it was found to be 1. 88MPa. This indicated that the remediated sludge was well solidified and safe to be used as a raw substance for roadway blocks. Therefore, this huge amount of by-product sludge derived from the granite cutting industry, which has a negative environmental impact due to its disposal, can be utilized as a binder material for solidification/stabilization of hazardous sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Egyptian Environmental Affairs Agency (EEAA, 2010), Country report on the solid waste management. http://www. sweep-net.org/ckfinder/userfiles/files/country-profiles/rapport-Egypte-en. pdf.

  2. Q. Guangren, C. Yali, C. Pengcheong and T. Joohwa, J. Hazard. Mater., 129, 274 (2006).

    Article  Google Scholar 

  3. S. Alejandro and N. Jacint, Chemosphere, 68, 703 (2007).

    Article  Google Scholar 

  4. M. S. Bilgili, A. Demir, M. Ince and B. Ozkaya, J. Hazard. Mater., 145, 186 (2006).

    Article  Google Scholar 

  5. M. A. Knecht, Overview of U. S. Federal Laws and Regulations Affecting Mixed Waste Treatment. In: Hazardous and Radioactive Waste Treatment Technologies Handbook, CRP Press, ISBN 978-08493-9586-4 (2001).

    Google Scholar 

  6. I. Buj, J. Torras, M. Rovira and J. de Pablo, J. Hazard. Mater., 175, 789 (2010).

    Article  CAS  Google Scholar 

  7. A. M. Ashmawy, H. S. Ibrahim, S. M. Abdel Moniem and T. S. Saleh, Toxicol. Environ. Chem., 94(9), 1657 (2012).

    Article  CAS  Google Scholar 

  8. D. Tomasevic, M. B. Dalmacija, M. D. j. Prica, B. D. Dalmacija, D. V. Kerkez, M. R. Becelic-Tomin and S. D. Roncevic, Chemosphere, 92(11), 1490 (2013).

    Article  CAS  Google Scholar 

  9. M. R. Lasheen, A. M. Ashmawy, H. S. Ibrahim and S. M. Abdel Moniem, Desalination and Water Treatment, 51, 2644 (2013).

    Article  CAS  Google Scholar 

  10. F. Garrido, V. Illera, M. T. Garci and a-Gonza lez, Appl. Geochemistry, 20(2), 397 (2005).

    Article  CAS  Google Scholar 

  11. P. Torres, H. R. Fernandes, S. Agathopoulos, D. U. Tulyaganov and J. M. F. Ferreira, J. Eur. Ceram. Soc., 24, 3177 (2004).

    Article  CAS  Google Scholar 

  12. R. R. Menezes, H. S. Ferreira, G. A. Neves, H. de L. Lira and H. C. Ferreira, J. Eur. Ceram. Soc., 25(7), 1149 (2005).

    Article  CAS  Google Scholar 

  13. P. Torres, H. R. Fernandes, S. Olhero and J. M. F. Ferreira, J. Eur. Ceram. Soc., 29(1), 23 (2009).

    Article  CAS  Google Scholar 

  14. I. Mármol, P. Ballester, S. Cerro, G. Monrós, J. Morales and L. Sánchez, Cem. Concr. Compos., 32(8), 617 (2010).

    Article  Google Scholar 

  15. S. N. Monteiro, L. A. Peçanha and C. M. F. Vieira, J. Eur. Ceram. Soc., 24, 2349 (2004.

    Article  CAS  Google Scholar 

  16. American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 22nd Ed. Washington D. C. (2012).

  17. R. G. McLaren and L. M. Clucas, J. Environ. Qual., 30, 1968 (2001).

    Article  CAS  Google Scholar 

  18. G. Kandpal, B. Ram, P. C. Srivastava and S. K. Singh, J. Hazard. Mater., 106B, 133 (2004).

    Article  Google Scholar 

  19. American Society of Testing and Materials (ASTM, 1991). Annual Book of ASTM Standards, Part II, Philadelphia: ASTM.

  20. European Committee for Standardization, (ENV 12176, 2000). Characterization of sludge -Determination of pH-value. Brussels, Belgium. http://www. ecn. nl/docs/society/horizontal/hor15_ph. pdf.

  21. European Council Decision 2003/33/EC. Establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Journal of the European Communities.

  22. U. S. EPA, Toxicity characteristic leaching procedure (TCLP), Federal Register, 40 CFR 50, No. 286, 406 (1986.

    Google Scholar 

  23. U. S. EPA, Training module on Hazardous Waste Identification (40 CFR Parts 261), Solid Waste and Emergency Response (5305W), EPA 530-K-05-012 (2005).

    Google Scholar 

  24. U. S. EPA, Multiple Extraction Procedure (MEP) Method 1320, Test Methods for Evaluating Solid Waste: Physical/Chemical Methods (SW-846), 4 (1986).

    Google Scholar 

  25. K. S. L. Lo and Y. H. Chen, Sci. Total Environ., 90, 99 (1990).

    Article  CAS  Google Scholar 

  26. Abdul Ghaffar, Removal and stabilization of chromium metal ions from industrial effluents, Electronic Journal of Environmental, Agricultural and Food Chemistry, (EJEAFCHE), 5(2), 1286 (2006).

    CAS  Google Scholar 

  27. R. A. Shawabkeh, J. Hazard. Mater., B 125, 237 (2005).

    Article  CAS  Google Scholar 

  28. C. Pérez-Sirvent, M. L. García-Lorenzo, M. J. Martínez-Sánchez, M. C. Navarro, J. Marimón and J. Bech, Environment International, 33, 502 (2007).

    Article  Google Scholar 

  29. G. Xu, M. Liu and G. Li, J. Hazard. Mater., 260(15), 74 (2013).

    Article  CAS  Google Scholar 

  30. H. Zhang, Y. Zhao and J. Qi, J. Hazard. Mater., 141(1), 106 (2007.

    Article  CAS  Google Scholar 

  31. U. S. EPA, Stabilization/Solidification of CERCLA and RCRA Wastes: Physical Tests, Chemical Testing Procedures, Technology Screening, and Field Activities. EPA/625/6-89/022, U. S. Environmental Protection Agency, Center for Environmental Research Information, Cincinnati, Ohio (1989).

  32. J. Naji, Journal of Science and Technology-Yemen, 7(2), 2002 (2002).

    Google Scholar 

  33. A. M. Marabini, P. Plescia, D. Maccari, F. Burragato and M. Pelino, Int. J. Miner. Process., 53(1-2), 121 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimaa M. Abdel Moniem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasheen, M.R., Ashmawy, A.M., Ibrahim, H.S. et al. Immobilization technologies for the management of hazardous industrial waste using granite waste (case study). Korean J. Chem. Eng. 33, 914–921 (2016). https://doi.org/10.1007/s11814-015-0187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0187-7

Keywords

Navigation