Skip to main content
Log in

The mechanism of higher alcohol formation on ZrO2-based catalyst from syngas

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A chain growth scheme for the synthesis of alcohols from carbon monoxide and hydrogen is proposed based on the chemical enrichment method on ZrO2-based catalyst. Methanol addition has no obvious effect on the STY of C2+ alcohols, indicating that COH→CCOH is a slow initial growth step. Addition of ethanol and propanols can enhance the STY of isobutanol, especially n-propanol, revealing that n-propanol is largely the precursor of isobutanol. Results of large alcohols addition further reveal the relationship between small alcohols and large alcohols of formation. Also, addition of aldehydes has a similar effect on the formation of higher alcohols, indicating that alcohols exist in the form of aldehydes before desorption. Anisole are introduced into syngas for confirmation of predicted intermediates and the result indicates that formyl species is participated both in the formation of methanol and higher alcohols. Reaction temperature has a significant effect on the chain growth of alcohols synthesis. Under low temperature, chain growth occurs with CO insertion and alcohols are linear products. Isobutanol appears and becomes the main product during C2+ alcohols undergo an aldo-condensation reaction at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Zhang, S. Muratsugu, N. Ishiguro and M. Tada, Catalysis, 3, 1855 (2013).

    Google Scholar 

  2. S.D. Sharma, K. McLennan, M. Dolan, T. Nguyen and D. Chase, Fuel, 108, 42 (2013).

    Article  CAS  Google Scholar 

  3. Y.Y. Liu, K. Murata, M. Inaba, I. Takahara and K. Okabe, Fuel, 104, 62 (2013).

    Article  CAS  Google Scholar 

  4. M. Gupta, M. L. Smith and J. J. Spivey, ACS Catal., 1, 641 (2011).

    Article  CAS  Google Scholar 

  5. S.-H. Yeon, D.-H. Shin, N.-S. Nho, K.-H. Shin, C.-S. Jin and S.-C. Nam, Korean J. Chem. Eng., 30, 864 (2013).

    Article  CAS  Google Scholar 

  6. D. Brat, C. Weber, W. Lorenzen, H. B. Bode and E. Boles, Biotechnology for Biofuels, 5, 65 (2012).

    Article  CAS  Google Scholar 

  7. T. A. Slating and J. P. Kesan, Wisconsin Law Review, 1109–1179 (2011).

    Google Scholar 

  8. R. Negishi, Rev. The Physico-Chemical Society of Japan, 15, 171 (1941).

    CAS  Google Scholar 

  9. A. B. Stiles, AZChE J., 23, 362 (1977).

    Article  CAS  Google Scholar 

  10. A.B. Stiles, F. Chen, J.B. Harrison, X.D. Hu, D.A. Storm and H. X. Yang, Ind. Eng. Chem. Res., 30, 811 (1991).

    Article  CAS  Google Scholar 

  11. K. J. Smith and R.B. Anderson, Can. J. Chem. Eng., 61, 40 (1983).

    Article  CAS  Google Scholar 

  12. K. J. Smith and R. B. A. Anderson, J. Catal, 85, 428 (1984).

    Article  CAS  Google Scholar 

  13. G. A. Vedage, P. B. Himelfarb, G.W. Simmons and K. Klier, Solid State Chemistry in Catalysis, 18, 295 (1985).

    Article  Google Scholar 

  14. T. J. Mananec, J. Catal., 99, 115 (1986).

    Article  Google Scholar 

  15. A. M. Hilmen, M. Xu, M. J. L. Gines and E. Iglesia, Appl. Catal. A: Gen., 169, 355 (1998).

    Article  CAS  Google Scholar 

  16. Y.N. Artyukh, N. K. Lunev, O. P. Verkhgradskii, G. A. Zelenkov, L.A. Oeva and E. A. limovich, Theor. Exp. Chem., 26, 476 (1990).

    Article  Google Scholar 

  17. A. Beretta, L. Lietti, E. Tronconi, P. Forzatti and I. Pasquon, Ind. Eng. Chem. Res., 35, 2154 (1996).

    Article  CAS  Google Scholar 

  18. W. An, Y.Q. Niu and Z. H. Chen, J. Fuel Chem. Technol., 22, 63 (1994).

    CAS  Google Scholar 

  19. T. Jiang, Y.Q. Niu and B. Zhong, J. Fuel Chem. Technol., 28, 101 (2000).

    CAS  Google Scholar 

  20. D. P. He, Ph.D. Dissertation, Dalian Institute of Chemical Physics, Chinse Academy of Sciences, Dalian (2004).

    Google Scholar 

  21. Y.Q. Wu, H. J. Xie, Y. L. Kou, L. Tan, Y. Z. Han and Y. S. Tan, J. Fuel Chem. Technol., 41, 869 (2013).

    Article  Google Scholar 

  22. G.T. Morgan and D.V.N. Hardy, J. Soc. Chem. Ind., 52, 518 (1933).

    Article  Google Scholar 

  23. A. L. Dent and R. J. Kokes, J. Phy. Chem., 73, 3781 (1969).

    Article  CAS  Google Scholar 

  24. R. J. Kokes, Accounts of Chemical Research, 6, 233 (1973).

    Article  Google Scholar 

  25. P. González-Navarrete, M. Calatayud, J. André, F. Ruipérez and D. Roca-Sanjuán, J. Phys. Chem. A., 117, 5354 (2013).

    Article  Google Scholar 

  26. R.R. Gay, M. H. Nodine, V. E. Henrich, H. J. Zeiger and E. I. Solomon, J. ACS, 102, 6752 (1980).

    CAS  Google Scholar 

  27. H. H. Kung, Cataly. Rev., Sci. Eng., 22, 235 (1980).

    Article  CAS  Google Scholar 

  28. J. Saussey, J.C. Lavalley, J. Lamotte and T. Rais, J. Chem. Soc., Chem. Commun., 5, 278 (1982).

    Article  Google Scholar 

  29. J. J. Spivey and A. Egbebi, Chem. Soc. Rev., 36, 1514 (2007).

    Article  CAS  Google Scholar 

  30. J.G. Nunan, C.E. Bogdan, K. Klier, K. J. Smith, C.W. Young and R. G. Herman, J. Catal., 113, 410 (1988).

    Article  CAS  Google Scholar 

  31. V. Subramani and S.K. Gangwal, Energy Fuels, 22, 814 (2008).

    Article  CAS  Google Scholar 

  32. P. Chaumette, P. Courty, A. Kiennemann and B. Ernst, Top. Catal., 2, 117 (1995).

    Article  CAS  Google Scholar 

  33. J.C. Lavalley, J. Saussey, J. Lamotte and T. Rais, J. Mol. Catal., 17, 289 (1982).

    Article  CAS  Google Scholar 

  34. B. Kozma, I. Wojnarovits and I. Dekany, Reac. Kinet. Catal. Lett., 59, 285 (1996).

    Article  CAS  Google Scholar 

  35. D. J. Elliot and F. J. Pennella, J. Catal., 114, 90 (1988).

    Article  Google Scholar 

  36. D. Li, C. Yang, H. Qi, H. Zhang, W. Li, Y. Sun and B. Zhong, Catal. Commun., 5, 605 (2004).

    Article  CAS  Google Scholar 

  37. J. Bao, Z. Sun, Y. Fu, G. Bian, Y. Zhang and N. Tsubaki, Top. Catal., 52, 789 (2009).

    Article  CAS  Google Scholar 

  38. N. Tien-Thao, H. Alamdari, M. H. Zahedi-Niaki and S. Kaliaguine, Appl. Catal. A: Gen., 311, 204 (2006).

    Article  CAS  Google Scholar 

  39. W. S. Epling, G. B. Hoflund and D. M. Minahan, J. Catal., 169, 438 (1997).

    Article  CAS  Google Scholar 

  40. W. Keim and W. Falter, Catal. Lett., 3, 59 (1989).

    Article  CAS  Google Scholar 

  41. K. Fang, D. Li, M. Lin, M. Xiang, W. Wei and Y. Sun, Catal. Today, 147, 133 (2009).

    Article  CAS  Google Scholar 

  42. V. S. Dorokhov, D. I. Ishutenko, P. A. Nikul’shin, O. L. Eliseev, N. N. Rozhdestvenskaya, V. M. Kogan and A. L. Lapidus, Doklady Chemistry, 451, 191 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisheng Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Xie, H., Kou, Y. et al. The mechanism of higher alcohol formation on ZrO2-based catalyst from syngas. Korean J. Chem. Eng. 32, 406–412 (2015). https://doi.org/10.1007/s11814-014-0236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0236-7

Keywords

Navigation