Skip to main content
Log in

Genome Sequence of a Marine Carotenoid Producing Yeast Rhodotorula mucilaginosa CYJ03

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Carotenoids are valuable pigments that have been widely used in food, pharmaceutical, animal breeding and cosmetics industries. Due to the increasing demand for carotenoids of natural origin, the trend for production of carotenoids by red yeast has become popular. Strain Rhodotorula mucilaginosa CYJ03 was isolated from northern Yellow Sea of China for its carotenoid producing potential. It was found that the whole genome of CYJ03 was 19.03 Mb in size and contained 6301 protein-coding genes including a gene cluster for the carotenoids biosynthesis. The genome sequence would be valuable for exploring the potential biological properties of CYJ03, as well as for facilitating the molecular genetic analysis and the manipulation of carotenoids accumulation in this strain, and for the development of it as an engineered host for carotenoid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhter, S., Aziz, R. K., and Edwards, R. A., 2012. Phispy: A novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Research, 40. (16): 329–334.

    Article  Google Scholar 

  • Arrach, N., Fernandez-Martin, R., Cerda-Olmedo, E., and Ava-los, J., 2001. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phyco-myces. Proceedings of the National Academy of Sciences of the United States of America, 98. (4): 1687–1692.

    Article  Google Scholar 

  • Buzzini, P., Innocenti, M., Turchetti, B., Libkind, D., van Broock, M., and Mulinacci, N., 2007. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Canadian Journal of Micro- biology, 53. (8): 1024–1031.

    Article  Google Scholar 

  • Chin, C. S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Conception, G. T., Clum, A., Dunn, C, O’Malley, R., Figueroa-Balderas, R., and Morales-Cruz, A., 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods, 13. (12): 1050–1054.

    Article  Google Scholar 

  • Dasgupta, D., Sharma, T., Bhatt, A., Bandhu, S., and Ghosh, D., 2017. Cultivation of oleaginous yeast Rhodotorula mucilaginos. IIPL32 in split column airlift reactor and its influence on fuel properties. Biocatalysis & Agricultural Biotechnology, 10: 308–316.

    Article  Google Scholar 

  • Deligios, M., Fraumene, C., Abbondio, M., Mannazzu, I., Tanca, A., Addis, M. F., and Uzzau, S., 2015. Draft genome sequence of Rhodotorula mucilaginosa, an emergent opportunistic pathogen. Genome Announcements, 3 (2): 1–2.

    Article  Google Scholar 

  • Frengova, G. I., and Beshkova, D. M., 2009. Carotenoids from Rhodotorul. and Phaffia. Yeasts of biotechnological importance. Journal of Industrial Microbiology & Biotechnology, 36 (2): 163–180.

    Article  Google Scholar 

  • Gan, H. M., Thomas, B. N., Cavanaugh, N. T., Morales, G. H., Mayers, A. N., Savka, M. A., and Hudson, A. O., 2017. Whole genome sequencing of Rhodotorula mucilaginos. isolated from the chewing stick (Distemonanthus bentha-mianus): Insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis. PeerJ, 5 (1): e4030.

    Article  Google Scholar 

  • Hawksworth, D. L., Kirk, P. M., Sutton, B. C., and Pegler, D. N., 1996. Ainsworth & Bisby’s dictionary of the fungi. Revista do Instituto de Medicina Tropical de Sao Paulo, 38. (4): 17–19.

    Article  Google Scholar 

  • Hernandez-Almanza, A., Montanez, J. C., Aguilar-Gonzalez, M. A., Martinez-Avila, C, Rodriguez-Herrera, R., and Aguilar, C. N., 2014. Rhodotorula glutini. as source of pigments and metabolites for food industry. Food Bioscience, 5. (Complete): 64–72.

    Article  Google Scholar 

  • Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M. C., Rattei, T., Mende, D. R., Sunagawa, S., and Kuhn, M., 2016. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research, 44: D286-D293.

    Article  Google Scholar 

  • Ignatova, L. V., Brazhnikova, Y. V., Berzhanova, R. Z., and Mukasheva, T. D., 2015. Plant growth-promoting and antifungal activity of yeasts from dark chestnut soil. Microbiological Research, 175: 78–83.

    Article  Google Scholar 

  • Koonin, E. V., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Krylov, D. M., Makarova, K. S., Mazumder, R., Mekhe-dov, S. L., Nikolskaya, A. N., and Rao, B. S., 2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology, 5 (2): R7-R7.

    Google Scholar 

  • Kot, A. M., Blazejak, S., Gientka, I., Kieliszek, M., and Brys, J., 2018. Torulene and torularhodin: “New” fungal carotenoids for industry? Microbial Cell Factories, 17. (1): 49.

    Article  Google Scholar 

  • Landolfo, S., Ianiri, G., Camiolo, S., Porceddu, A., Mulas, G., Chessa, R., Zara, G., and Mannazzu, I., 2018. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa. Microbiology, 164. (1): 78–87.

    Article  Google Scholar 

  • Li, C., Zhang, N., Li, B., Xu, Q., Song, J., Wei, N., Wang, W., and Zou, H., 2017. Increased torulene accumulation in red yeast Sporidiobolus pararoseu. NGR as stress response to high salt conditions. Food Chemistry, 237: 1041–1047.

    Article  Google Scholar 

  • Lomsadze, A., Terhovhannisyan, V., Chernoff, Y. O., and Bo-rodovsky, M., 2005. Gene identification in novel eukar- yotic genomes by self-training algorithm. Nucleic Acids Research, 30. (20): 6494–6506.

    Article  Google Scholar 

  • Ma, W., Chen, X., Wang, B., Lou, W., Chen, X., Hua, J., Sun, Y. J., Zhao, Y., and Peng, T., 2017. Characterization, antioxid-ativity, and anti-carcinoma activity of exopolysaccharide extract from Rhodotorula mucilaginos. CICC 33014. Carbohydrate Polymers, 181: 768.

    Article  Google Scholar 

  • Mata-Gomez, L. C., Montanez, J. C., Mendez-Zavala, A., and Aguilar, C. N., 2014. Biotechnological production of carotenoids by yeasts: An overview. Microbial Cell Factories, 13. (1): 12.p.

    Google Scholar 

  • Medema, M. H., Blin, K., Cimermancic, P., De Jager, V., Zakrzewski, P., Fischbach, M. A., Weber, T., Takano, E., Breitling, R., 2011. AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 39. (web server issue): W339.

    Article  Google Scholar 

  • Minora, K., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M., 2004. The KEGG resource for deciphering the genome. Nucleic Acids Research, 32: 277–280.

    Article  Google Scholar 

  • Akhtyamova, N., and Sattarova, R. K., 2013. Endophytic yeast Rhodotorula rubr. strain TG-1: Antagonistic and plant protection activities. Biochemistry & Rhysiology, 2. (1): 1000104. DOI: 10.4172/2168-9652.1000104.

    Google Scholar 

  • Prado-Cabrero, A., Scherzinger, D., Avalos, J., and Al-Babili, S., 2007. Retinal biosynthesis in fungi: Characterization of the carotenoid oxygenase CarX from Fusarium fujikuroi. Eukar-yotic Cell, 6 (4): 650–657.

    Article  Google Scholar 

  • Rodriguez-Saiz, M., de la Fuente, J. L., and Barredo, J. L., 2010. Xanthophyllomyces dendrorhou. for the industrial production of astaxanthin. Applied Microbiology & Biotechnology, 88: 645–658.

    Article  Google Scholar 

  • Saha, C., and Seal, A., 2015. Early changes in shoot transcrip-tome of rice in response to Rhodotorula mucilaginos. JGTA-S1. Genomics Data, 6: 237–240.

    Article  Google Scholar 

  • Salvadori, M. R., Ando, R. A., Oiler do Nascimento, C. A., and Correa, B., 2014. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. Plos One, 9(1):e87968.

    Article  Google Scholar 

  • Sanz, C., Velayos, A., Alvarez, M. I., Benito, E. R., and Eslava, A. P., 2011. Functional analysis of the Phycomyces carR. gene encoding the enzymes phytoene synthase and lycopene cyclase. PloS One, 6. (8): e23102.

    Article  Google Scholar 

  • Singh, P., Tsuji, M., Singh, S. M., Roy, U., and Hoshino, T., 2013. Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midre Lovenbreen glacier, Svalbard, Arctic. Cryobiology, 66. (2): 167–175.

    Article  Google Scholar 

  • Tamura, K., Nei, M., and Kumar, S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101. (30): 11030–11035.

    Article  Google Scholar 

  • Wirth, F., and Goldani, L. Z., 2012. Epidemiology of Rhodotorula. An emerging pathogen. Interdisciplinary Perspectives on Infectious Diseases, 7.p, DOI: 10.1155/2012/465717.

    Google Scholar 

  • Wozniak, A., Lozano, C., Barahona, S., Niklitschek, M., Marcoleta, A., Alcaino, J., Sepulveda, D., Baeza, M., and Cifuentes, V, 2011. Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhou. grown in a non-fermentable carbon source. Ferns Yeast Research, 11. (3): 252–262.

    Article  Google Scholar 

  • Zhang, H., Ge, L., Chen, K., Zhao, L. N., and Zhang, X. Y., 2014. Enhanced biocontrol activity of Rhodotorula mucilaginosa, cultured in media containing chitosan against post-harvest diseases in strawberries: Possible mechanisms underlying the effect. Journal of Agricultural and Food Chemistry, 62. (18): 4214–4224.

    Article  Google Scholar 

Download references

Acknowledgement

The study is supported by the Postdoctoral Applied Research Project of Qingdao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengguo He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Wang, Y., Cai, Y. et al. Genome Sequence of a Marine Carotenoid Producing Yeast Rhodotorula mucilaginosa CYJ03. J. Ocean Univ. China 19, 466–472 (2020). https://doi.org/10.1007/s11802-020-4149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4149-2

Keywords

Navigation