Skip to main content
Log in

Research on flexible silver nanowire electrode for organic light-emitting devices

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

By spin-coating silver nanowires (AgNWs) and polymethyl methacrylate (PMMA), applying pressure imprint and plasma treatment, we obtained flat AgNW thin film with a sheet resistance of 20 Ω/sq and a transmittance of 78% at 550 nm with low surface roughness. No significant change in sheet resistance was observed after cyclic bending (bending radius is 5 mm) test and tape test. After 1 000 bending tests, the change rate of sheet resistance was only 8.3%. The organic light-emitting devices (OLEDs) were prepared by using such AgNW electrodes and a maximum brightness of 5 090 cd/m2 was obtained. Compared with the AgNWs electrode without any treatment, the present AgNW electrodes have lower sheet resistance and better hole injection. Our results show spin-coated with flat layers, embossed and plasma-treated AgNW electrodes are suitable for manufacturing flexible organic optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo Y, Wang C, Wang L, Ding Y, Li L, Wei B and Zhang J, ACS Appl. Mater. Interfaces 6, 10213 (2014).

    Article  Google Scholar 

  2. Chen H W, Lee J H, Lin B Y, Chen S and Wu S T, Light Sci. Appl. 7, 17168 (2018).

    Article  Google Scholar 

  3. Kim D H, Cho N S, Oh H Y, Yang J H, Jeon W S, Park J S, Suh M C and Kwon J H, Adv. Mater. 23, 2721 (2011).

    Article  Google Scholar 

  4. Kim S, Kwon H J, Lee S, Shim H, Chun Y, Choi W, Kwack J, Han D, Song M, Kim S, Mohammadi S, Kee I and Lee S Y, Adv. Mater. 23, 3511 (2011).

    Article  Google Scholar 

  5. Gaynor W, Hofmann S, Christoforo M G, Sachse C, Mehra S, Salleo A, McGehee M D, Gather M C, Lussem B, Muller-Meskamp L, Peumans P and Leo K, Adv. Mater. 25, 4006 (2013).

    Article  Google Scholar 

  6. Meng H, Luo J, Wang W, Shi Z, Niu Q, Dai L and Qin G, Advanced Functional Materials 23, 3324 (2013).

    Article  Google Scholar 

  7. Yun S O, Hwang Y, Park J, Jeong Y, Kim S H, Noh B I, Jung H S, Jang H S, Hyun Y, Choa S H and Ko H C, Adv. Mater. 25, 5626 (2013).

    Article  Google Scholar 

  8. White M S, Kaltenbrunner M, Glowacki E D, Gutnichenko K, Kettlgruber G, Graz I, Aazou S, Ulbricht C, Egbe D A M, Miron M C, Major Z, Scharber M C, Sekitani T, Someya T, Bauer S and Sariciftci N S, Nature Photonics 7, 811 (2013).

    Article  ADS  Google Scholar 

  9. Paine D C, Whitson T, Janiac D, Beresford R, Yang C O and Lewis B, Journal of Applied Physics 85, 8445 (1999).

    Article  ADS  Google Scholar 

  10. Fievet F, Lagier J P and Figlarz M, MRS BULLETIN 14, 29 (1989).

    Article  Google Scholar 

  11. Sun Y, Yin Y, Brian T M, Herricks T and Xia Y, Chem. Mater. 11, 4736 (2002).

    Article  Google Scholar 

  12. Kwon K C, Kim S, Kim C, Lee J L and Kim S Y, Organic Electronics 15, 3154 (2014).

    Article  Google Scholar 

  13. Yang G, Lee C, Kim J, Ren F and Pearton S J, Phys. Chem. Chem. Phys. 15, 1798 (2013).

    Article  Google Scholar 

  14. Liu J, Li Y, Wang S, Ling Z, Lian H, Xu T, Zhang X, Liao Y and Wei B, Journal of Alloys and Compounds 814, 152299 (2020).

    Article  Google Scholar 

  15. Li D, Lai W Y, Zhang Y Z and Huang W, Adv. Mater. 30, 1704738 (2018).

    Article  Google Scholar 

  16. Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N and Taliani C, Nature 397, 121 (1999).

    Article  ADS  Google Scholar 

  17. Zheng H, Zheng Y, Liu N, Ai N, Wang Q, Wu S, Zhou J, Hu D, Yu S, Han S, Xu W, Luo C, Meng Y, Jiang Z, Chen Y, Li D, Huang F, Wang J, Peng J and Cao Y, Nat. Commun. 4, 1971 (2013).

    Article  ADS  Google Scholar 

  18. Pardo D A, Jabbour G E and Peyghambarian N, Adv. Mater. 12, 1249 (2000).

    Article  Google Scholar 

  19. Nam S, Song M, Kim D H, Cho B, Lee H M, Kwon J D, Park S G, Nam K S, Jeong Y, Kwon S H, Park Y C, Jin S H, Kang J W, Jo S and Kim C S, Sci. Rep. 4, 4788 (2014).

    Article  Google Scholar 

  20. Liston E M, Martinu L and Wertheimer M R, Journal of Adhesion Science and Technology 7, 1091 (1993).

    Article  Google Scholar 

  21. Liston E M, The Journal of Adhesion 30, 199 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-tao Hu  (胡俊涛).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Jt., Li, J., Zhang, Gg. et al. Research on flexible silver nanowire electrode for organic light-emitting devices. Optoelectron. Lett. 17, 70–74 (2021). https://doi.org/10.1007/s11801-021-0005-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-021-0005-x

Document code

Navigation