Skip to main content
Log in

Hamiltonian Dynamical Systems: Symbolical, Numerical and Graphical Study

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Hamiltonian dynamical systems can be studied from a variety of viewpoints. Our intention in this paper is to show some examples of usage of two Maxima packages for symbolical and numerical analysis (pdynamics and poincare, respectively), along with the set of scripts for obtaining the code corresponding to graphical representations of Poincaré sections, including animation movies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avendaño-Camacho, M., Vallejo, J.A., Vorobjev, Yu.: A simple global representation for second-order normal forms of Hamiltonian systems relative to periodic flows. J. Phys. A Math. Theor. 46, 395201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avendaño-Camacho, M., Vallejo, J.A., Vorobjev, Yu.: A perturbation theory approach to the stability of the Pais–Uhlenbeck oscillator. J. Math. Phys. 58, 093501 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  4. Carretero-González, R., Núñez-Yépez, H.N., Salas-Brito, A.L.: Regular and chaotic behaviour in an extensible pendulum. Eur. J. Phys. 15, 139–148 (1994)

    Article  Google Scholar 

  5. Cheb-Terrab, E.S., Oliveira, H.P.: Poincaré sections of Hamiltonian systems. Comput. Phys. Commun. 95(2–3), 171–189 (1996)

    Article  MATH  Google Scholar 

  6. Cuerno, R., Rañada, A.F., Ruiz-Lorenzo, J.J.: Deterministic chaos in the elastic pendulum: a simple laboratory for nonlinear dynamics. Am. J. Phys. 60(73), 73–79 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cushman, R.H.: Geometry of perturbation theory. In: Hobill, D., et al. (eds.) Deterministic Chaos in General Relativity, pp. 89–101. Springer, Berlin (1994)

    Chapter  Google Scholar 

  8. Cushman, R.H., Bates, L.: Global Aspects of Classical Integrable Systems. Birkhauser, Basel (1997)

    Book  MATH  Google Scholar 

  9. Lynch, S.: Dynamical Systems with Applications using Maple. Birkhauser, Basel (2001)

    Book  MATH  Google Scholar 

  10. Moser, J.: Regularization of Kepler’s problem and the averaging method on a manifold. Commun. Pure Appl. Math. XXIII, 609–636 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ostrogradsky, M.: Memoires sur les equations differentielles relatives au problème des isoperimètres. Mem. Acad. St. Petersbourg VI 4, 385–517 (1850)

    Google Scholar 

  12. Pavšič, M.: Stable self-interacting Pais–Uhlenbeck oscillator. Mod. Phys. Lett. A28(36), 1350165 (2013)

    MATH  Google Scholar 

  13. Schwarz, G.: Smooth funtions invariant under the action of a compact Lie group. Topology 14, 63–68 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Takato, S.: What is and how to use –linkage between dynamic geometry software and graphics capabilities. In: Greuel, G.-M., et al. (eds.) Mathematical Software –ICMS 2016. Lecture Notes in Computer Science. Springer, Cham (2016)

  15. Takato, S., McAndrew, A., Vallejo, J.A., Kaneko, M.: Collaborative Use of and Free Computer Algebra Systems. Math. Comput. Sci. 11(3–4), 503–514 (2017)

  16. Takato, S.: Brachistochrone Problem as teaching material–application of with maxima. In: Gervasi, O., et al. (ed.) Computational Science and Its Applications–ICCSA 2017. Lecture Notes in Computer Science, p. 10407. Springer, Cham (2017)

  17. Takato, S., Vallejo, J.A.: Interfacing free computer algebra systems and C with . In: Computer Algebra Systems in Teaching and Research. Siedlce University of Natural Sciences and Humanities, vol. 6, pp. 172–185 (2017)

Download references

Acknowledgements

The authors express their gratitude to Masataka Kaneko (Tōhō University) and Yasuyuki Nakamura (Nagoya Institute of Technology) for many fruitful discussions about the topics in this paper. Thanks are also due to Richard Fateman for developing rkfun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Vallejo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work partially supported by Grants KAKENHI 15K01037 (ST, Japan) and CONACyT CB-2012 179115 (JAV, México).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takato, S., Vallejo, J.A. Hamiltonian Dynamical Systems: Symbolical, Numerical and Graphical Study. Math.Comput.Sci. 13, 281–295 (2019). https://doi.org/10.1007/s11786-019-00396-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-019-00396-6

Keywords

Mathematics Subject Classification

Navigation